{"title":"多属性增益损失(MAGL)方法预测选择","authors":"Ram Kumar Dhurkari","doi":"10.1016/j.jmp.2023.102804","DOIUrl":null,"url":null,"abstract":"<div><p>A better method named MAGL (Multi-Attribute Gain Loss) is proposed to predict choices made by consumers in a multi-attribute setting. The MAGL method uses the tenets of prospect theory, Kauffman’s complexity theory, norm theory, and context-dependent choice theory. Since the choice processes are often found to be affected by the context or the choice set, the proposed MAGL method is able to model and predict the context-dependent choice behavior of consumers. The predictions of the MAGL method are useful to marketing/product managers in designing new products. The output of the MAGL method can be analyzed to determine which combination of attribute values is outperforming in a specific competitive market condition. A decision support system can be designed and developed for marketing/product managers where they can experiment by introducing, redesigning, or removing products and simulate the market share of various products for a similar consumer population.</p></div>","PeriodicalId":50140,"journal":{"name":"Journal of Mathematical Psychology","volume":"117 ","pages":"Article 102804"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Attribute Gain Loss (MAGL) method to predict choices\",\"authors\":\"Ram Kumar Dhurkari\",\"doi\":\"10.1016/j.jmp.2023.102804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A better method named MAGL (Multi-Attribute Gain Loss) is proposed to predict choices made by consumers in a multi-attribute setting. The MAGL method uses the tenets of prospect theory, Kauffman’s complexity theory, norm theory, and context-dependent choice theory. Since the choice processes are often found to be affected by the context or the choice set, the proposed MAGL method is able to model and predict the context-dependent choice behavior of consumers. The predictions of the MAGL method are useful to marketing/product managers in designing new products. The output of the MAGL method can be analyzed to determine which combination of attribute values is outperforming in a specific competitive market condition. A decision support system can be designed and developed for marketing/product managers where they can experiment by introducing, redesigning, or removing products and simulate the market share of various products for a similar consumer population.</p></div>\",\"PeriodicalId\":50140,\"journal\":{\"name\":\"Journal of Mathematical Psychology\",\"volume\":\"117 \",\"pages\":\"Article 102804\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022249623000603\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249623000603","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multi-Attribute Gain Loss (MAGL) method to predict choices
A better method named MAGL (Multi-Attribute Gain Loss) is proposed to predict choices made by consumers in a multi-attribute setting. The MAGL method uses the tenets of prospect theory, Kauffman’s complexity theory, norm theory, and context-dependent choice theory. Since the choice processes are often found to be affected by the context or the choice set, the proposed MAGL method is able to model and predict the context-dependent choice behavior of consumers. The predictions of the MAGL method are useful to marketing/product managers in designing new products. The output of the MAGL method can be analyzed to determine which combination of attribute values is outperforming in a specific competitive market condition. A decision support system can be designed and developed for marketing/product managers where they can experiment by introducing, redesigning, or removing products and simulate the market share of various products for a similar consumer population.
期刊介绍:
The Journal of Mathematical Psychology includes articles, monographs and reviews, notes and commentaries, and book reviews in all areas of mathematical psychology. Empirical and theoretical contributions are equally welcome.
Areas of special interest include, but are not limited to, fundamental measurement and psychological process models, such as those based upon neural network or information processing concepts. A partial listing of substantive areas covered include sensation and perception, psychophysics, learning and memory, problem solving, judgment and decision-making, and motivation.
The Journal of Mathematical Psychology is affiliated with the Society for Mathematical Psychology.
Research Areas include:
• Models for sensation and perception, learning, memory and thinking
• Fundamental measurement and scaling
• Decision making
• Neural modeling and networks
• Psychophysics and signal detection
• Neuropsychological theories
• Psycholinguistics
• Motivational dynamics
• Animal behavior
• Psychometric theory