多属性增益损失(MAGL)方法预测选择

IF 2.2 4区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ram Kumar Dhurkari
{"title":"多属性增益损失(MAGL)方法预测选择","authors":"Ram Kumar Dhurkari","doi":"10.1016/j.jmp.2023.102804","DOIUrl":null,"url":null,"abstract":"<div><p>A better method named MAGL (Multi-Attribute Gain Loss) is proposed to predict choices made by consumers in a multi-attribute setting. The MAGL method uses the tenets of prospect theory, Kauffman’s complexity theory, norm theory, and context-dependent choice theory. Since the choice processes are often found to be affected by the context or the choice set, the proposed MAGL method is able to model and predict the context-dependent choice behavior of consumers. The predictions of the MAGL method are useful to marketing/product managers in designing new products. The output of the MAGL method can be analyzed to determine which combination of attribute values is outperforming in a specific competitive market condition. A decision support system can be designed and developed for marketing/product managers where they can experiment by introducing, redesigning, or removing products and simulate the market share of various products for a similar consumer population.</p></div>","PeriodicalId":50140,"journal":{"name":"Journal of Mathematical Psychology","volume":"117 ","pages":"Article 102804"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Attribute Gain Loss (MAGL) method to predict choices\",\"authors\":\"Ram Kumar Dhurkari\",\"doi\":\"10.1016/j.jmp.2023.102804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A better method named MAGL (Multi-Attribute Gain Loss) is proposed to predict choices made by consumers in a multi-attribute setting. The MAGL method uses the tenets of prospect theory, Kauffman’s complexity theory, norm theory, and context-dependent choice theory. Since the choice processes are often found to be affected by the context or the choice set, the proposed MAGL method is able to model and predict the context-dependent choice behavior of consumers. The predictions of the MAGL method are useful to marketing/product managers in designing new products. The output of the MAGL method can be analyzed to determine which combination of attribute values is outperforming in a specific competitive market condition. A decision support system can be designed and developed for marketing/product managers where they can experiment by introducing, redesigning, or removing products and simulate the market share of various products for a similar consumer population.</p></div>\",\"PeriodicalId\":50140,\"journal\":{\"name\":\"Journal of Mathematical Psychology\",\"volume\":\"117 \",\"pages\":\"Article 102804\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022249623000603\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249623000603","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种更好的方法MAGL(Multi-AttributeGain-Loss)来预测消费者在多属性环境中的选择。MAGL方法使用了前景理论、考夫曼复杂性理论、规范理论和上下文相关选择理论的原理。由于选择过程经常受到上下文或选择集的影响,因此所提出的MAGL方法能够对消费者的上下文相关选择行为进行建模和预测。MAGL方法的预测对营销/产品经理设计新产品很有用。可以分析MAGL方法的输出,以确定哪个属性值组合在特定的竞争市场条件下表现优异。可以为营销/产品经理设计和开发决策支持系统,他们可以通过引入、重新设计或移除产品进行实验,并模拟类似消费者群体的各种产品的市场份额。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Attribute Gain Loss (MAGL) method to predict choices

A better method named MAGL (Multi-Attribute Gain Loss) is proposed to predict choices made by consumers in a multi-attribute setting. The MAGL method uses the tenets of prospect theory, Kauffman’s complexity theory, norm theory, and context-dependent choice theory. Since the choice processes are often found to be affected by the context or the choice set, the proposed MAGL method is able to model and predict the context-dependent choice behavior of consumers. The predictions of the MAGL method are useful to marketing/product managers in designing new products. The output of the MAGL method can be analyzed to determine which combination of attribute values is outperforming in a specific competitive market condition. A decision support system can be designed and developed for marketing/product managers where they can experiment by introducing, redesigning, or removing products and simulate the market share of various products for a similar consumer population.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Psychology
Journal of Mathematical Psychology 医学-数学跨学科应用
CiteScore
3.70
自引率
11.10%
发文量
37
审稿时长
20.2 weeks
期刊介绍: The Journal of Mathematical Psychology includes articles, monographs and reviews, notes and commentaries, and book reviews in all areas of mathematical psychology. Empirical and theoretical contributions are equally welcome. Areas of special interest include, but are not limited to, fundamental measurement and psychological process models, such as those based upon neural network or information processing concepts. A partial listing of substantive areas covered include sensation and perception, psychophysics, learning and memory, problem solving, judgment and decision-making, and motivation. The Journal of Mathematical Psychology is affiliated with the Society for Mathematical Psychology. Research Areas include: • Models for sensation and perception, learning, memory and thinking • Fundamental measurement and scaling • Decision making • Neural modeling and networks • Psychophysics and signal detection • Neuropsychological theories • Psycholinguistics • Motivational dynamics • Animal behavior • Psychometric theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信