{"title":"压电/压磁声子复合材料层板传输性能研究","authors":"Mohamed Mkaoir, Hamdi Ezzin, Hassiba Ketata, Anouar Njeh","doi":"10.1007/s00419-023-02382-8","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, the transmission characteristics of piezoelectric/piezomagnetic phononic composite laminates with and without a defect layer are predicted using the plane wave expansion and the stiffness matrix methods. The energy transmission and reflection spectrums show the appearance of two band gaps. The effect of the variation of the thickness of the epoxy layer on the transmission characteristics is also discussed. In addition, a passband can be produced and controlled within the band gap when inserting a defect layer. The effect of magnetoelectric constants, piezoelectric e<sub>15</sub> constant with piezoelectric defect layer (BaTiO<sub>3</sub>) as well as q<sub>15</sub> piezomagnetic constant with piezomagnetic defect layer (CoFe<sub>2</sub>O<sub>4</sub>) on transmission coefficient is further studied. These findings could be relevant to understanding the intrinsic physical properties of phononic piezoelectric-piezomagnetic composite laminate and provide flexible choices to meet real engineering applications.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"93 6","pages":"2273 - 2285"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the transmission properties of piezoelectric/piezomagnetic phononic composite laminates\",\"authors\":\"Mohamed Mkaoir, Hamdi Ezzin, Hassiba Ketata, Anouar Njeh\",\"doi\":\"10.1007/s00419-023-02382-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present work, the transmission characteristics of piezoelectric/piezomagnetic phononic composite laminates with and without a defect layer are predicted using the plane wave expansion and the stiffness matrix methods. The energy transmission and reflection spectrums show the appearance of two band gaps. The effect of the variation of the thickness of the epoxy layer on the transmission characteristics is also discussed. In addition, a passband can be produced and controlled within the band gap when inserting a defect layer. The effect of magnetoelectric constants, piezoelectric e<sub>15</sub> constant with piezoelectric defect layer (BaTiO<sub>3</sub>) as well as q<sub>15</sub> piezomagnetic constant with piezomagnetic defect layer (CoFe<sub>2</sub>O<sub>4</sub>) on transmission coefficient is further studied. These findings could be relevant to understanding the intrinsic physical properties of phononic piezoelectric-piezomagnetic composite laminate and provide flexible choices to meet real engineering applications.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"93 6\",\"pages\":\"2273 - 2285\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-023-02382-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-023-02382-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Study of the transmission properties of piezoelectric/piezomagnetic phononic composite laminates
In the present work, the transmission characteristics of piezoelectric/piezomagnetic phononic composite laminates with and without a defect layer are predicted using the plane wave expansion and the stiffness matrix methods. The energy transmission and reflection spectrums show the appearance of two band gaps. The effect of the variation of the thickness of the epoxy layer on the transmission characteristics is also discussed. In addition, a passband can be produced and controlled within the band gap when inserting a defect layer. The effect of magnetoelectric constants, piezoelectric e15 constant with piezoelectric defect layer (BaTiO3) as well as q15 piezomagnetic constant with piezomagnetic defect layer (CoFe2O4) on transmission coefficient is further studied. These findings could be relevant to understanding the intrinsic physical properties of phononic piezoelectric-piezomagnetic composite laminate and provide flexible choices to meet real engineering applications.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.