{"title":"纳米尺度的流体:从连续体到亚连续体的传输","authors":"Nikita Kavokine, R. Netz, L. Bocquet","doi":"10.1146/annurev-fluid-071320-095958","DOIUrl":null,"url":null,"abstract":"Nanofluidics has firmly established itself as a new field in fluid mechanics, as novel properties have been shown to emerge in fluids at the nanometric scale. Thanks to recent developments in fabrication technology, artificial nanofluidic systems are now being designed at the scale of biological nanopores. This ultimate step in scale reduction has pushed the development of new experimental techniques and new theoretical tools, bridging fluid mechanics, statistical mechanics, and condensed matter physics. This review is intended as a toolbox for fluids at the nanometer scale. After presenting the basic equations that govern fluid behavior in the continuum limit, we show how these equations break down and new properties emerge in molecular-scale confinement. A large number of analytical estimates and physical arguments are given to organize the results and different limits.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":25.4000,"publicationDate":"2020-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-fluid-071320-095958","citationCount":"146","resultStr":"{\"title\":\"Fluids at the Nanoscale: From Continuum to Subcontinuum Transport\",\"authors\":\"Nikita Kavokine, R. Netz, L. Bocquet\",\"doi\":\"10.1146/annurev-fluid-071320-095958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanofluidics has firmly established itself as a new field in fluid mechanics, as novel properties have been shown to emerge in fluids at the nanometric scale. Thanks to recent developments in fabrication technology, artificial nanofluidic systems are now being designed at the scale of biological nanopores. This ultimate step in scale reduction has pushed the development of new experimental techniques and new theoretical tools, bridging fluid mechanics, statistical mechanics, and condensed matter physics. This review is intended as a toolbox for fluids at the nanometer scale. After presenting the basic equations that govern fluid behavior in the continuum limit, we show how these equations break down and new properties emerge in molecular-scale confinement. A large number of analytical estimates and physical arguments are given to organize the results and different limits.\",\"PeriodicalId\":50754,\"journal\":{\"name\":\"Annual Review of Fluid Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":25.4000,\"publicationDate\":\"2020-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-fluid-071320-095958\",\"citationCount\":\"146\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-fluid-071320-095958\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-071320-095958","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Fluids at the Nanoscale: From Continuum to Subcontinuum Transport
Nanofluidics has firmly established itself as a new field in fluid mechanics, as novel properties have been shown to emerge in fluids at the nanometric scale. Thanks to recent developments in fabrication technology, artificial nanofluidic systems are now being designed at the scale of biological nanopores. This ultimate step in scale reduction has pushed the development of new experimental techniques and new theoretical tools, bridging fluid mechanics, statistical mechanics, and condensed matter physics. This review is intended as a toolbox for fluids at the nanometer scale. After presenting the basic equations that govern fluid behavior in the continuum limit, we show how these equations break down and new properties emerge in molecular-scale confinement. A large number of analytical estimates and physical arguments are given to organize the results and different limits.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.