柱面图上无序单体-二聚体模型

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Partha S. Dey, Kesav Krishnan
{"title":"柱面图上无序单体-二聚体模型","authors":"Partha S. Dey,&nbsp;Kesav Krishnan","doi":"10.1007/s10955-023-03159-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the disordered monomer-dimer model on cylinder graphs <span>\\({\\mathcal {G}}_n\\)</span>, i.e., graphs given by the Cartesian product of the line graph on <i>n</i> vertices, and a deterministic finite graph. The edges carry i.i.d. random weights, and the vertices also have i.i.d. random weights, not necessarily from the same distribution. Given the random weights, we define a Gibbs measure on the space of monomer-dimer configurations on <span>\\({\\mathcal {G}}_n\\)</span>. We show that the associated free energy converges to a limit and, with suitable scaling and centering, satisfies a Gaussian central limit theorem. We also show that the number of monomers in a typical configuration satisfies a law of large numbers and a Gaussian central limit theorem with appropriate centering and scaling. Finally, for an appropriate height function associated with a matching, we show convergence to a limiting function and prove the Brownian motion limit around the limiting height function in the sense of finite-dimensional distributional convergence.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"190 8","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Disordered Monomer-Dimer Model on Cylinder Graphs\",\"authors\":\"Partha S. Dey,&nbsp;Kesav Krishnan\",\"doi\":\"10.1007/s10955-023-03159-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the disordered monomer-dimer model on cylinder graphs <span>\\\\({\\\\mathcal {G}}_n\\\\)</span>, i.e., graphs given by the Cartesian product of the line graph on <i>n</i> vertices, and a deterministic finite graph. The edges carry i.i.d. random weights, and the vertices also have i.i.d. random weights, not necessarily from the same distribution. Given the random weights, we define a Gibbs measure on the space of monomer-dimer configurations on <span>\\\\({\\\\mathcal {G}}_n\\\\)</span>. We show that the associated free energy converges to a limit and, with suitable scaling and centering, satisfies a Gaussian central limit theorem. We also show that the number of monomers in a typical configuration satisfies a law of large numbers and a Gaussian central limit theorem with appropriate centering and scaling. Finally, for an appropriate height function associated with a matching, we show convergence to a limiting function and prove the Brownian motion limit around the limiting height function in the sense of finite-dimensional distributional convergence.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"190 8\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-023-03159-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-023-03159-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑柱面图\({\mathcal {G}}_n\)上的无序单体-二聚体模型,即n个顶点上的线形图的笛卡尔积给出的图和确定性有限图。边带有i.d随机权值,顶点也有i.d随机权值,不一定来自相同的分布。给定随机权值,我们在\({\mathcal {G}}_n\)上定义了单体-二聚体构型空间上的吉布斯测度。我们证明了相关的自由能收敛到一个极限,并且在适当的缩放和定心下,满足高斯中心极限定理。我们还证明了典型构型中单体的数目满足大数定律和高斯中心极限定理,并具有适当的定心和标度。最后,对于与匹配相关联的合适的高度函数,我们给出了对极限函数的收敛性,并在有限维分布收敛的意义上证明了极限高度函数周围的布朗运动极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Disordered Monomer-Dimer Model on Cylinder Graphs

Disordered Monomer-Dimer Model on Cylinder Graphs

We consider the disordered monomer-dimer model on cylinder graphs \({\mathcal {G}}_n\), i.e., graphs given by the Cartesian product of the line graph on n vertices, and a deterministic finite graph. The edges carry i.i.d. random weights, and the vertices also have i.i.d. random weights, not necessarily from the same distribution. Given the random weights, we define a Gibbs measure on the space of monomer-dimer configurations on \({\mathcal {G}}_n\). We show that the associated free energy converges to a limit and, with suitable scaling and centering, satisfies a Gaussian central limit theorem. We also show that the number of monomers in a typical configuration satisfies a law of large numbers and a Gaussian central limit theorem with appropriate centering and scaling. Finally, for an appropriate height function associated with a matching, we show convergence to a limiting function and prove the Brownian motion limit around the limiting height function in the sense of finite-dimensional distributional convergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信