{"title":"结合干燥剂除湿器的混合太阳能-热多室干燥机对均匀干燥效果的评价","authors":"Ali A. Gitan , Hussain H. Al-Kayiem","doi":"10.1016/j.solener.2023.111880","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Dried food industry consumes a significant amount of energy which requires more attention to renewable energy resources. Non-uniform solar drying has been deemed a drawback of solar dryer </span>commercialization<span> due to low-quality products influenced by the sun's off hours. Drying uniformity may be enhanced by using the hybrid solar-thermal technique that provides uniform operation conditions. The present work aims to evaluate the hybrid solar-thermal dryer that uses a desiccant dehumidifier based on the uniformity of process air temperature and humidity. The desiccant regeneration process has been assessed based on the temperature and humidity of the regeneration air. Power saving due to hybrid technique usage has been analyzed. The drying process has been conducted using 5 kg of red chili. The rehydration ratio of the product has been tested as an indication of product quality which is a key parameter for dryer performance. The results revealed that the process air at the drying cabinet inlet has a 95% relative thermal uniformity with a 0.95 standard deviation in </span></span>absolute humidity. The hybrid technique has helped to achieve around 67% power saving while only 22% of power has been held when operating with solar mode. In comparison to other techniques the current hybrid dryer showed better product quality. The current results could develop the solar drying industry in terms of homogeneous quality-product.</p></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"262 ","pages":"Article 111880"},"PeriodicalIF":6.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessment of hybrid solar-thermal multi-chamber dryer integrated with desiccant dehumidifier for uniform drying\",\"authors\":\"Ali A. Gitan , Hussain H. Al-Kayiem\",\"doi\":\"10.1016/j.solener.2023.111880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Dried food industry consumes a significant amount of energy which requires more attention to renewable energy resources. Non-uniform solar drying has been deemed a drawback of solar dryer </span>commercialization<span> due to low-quality products influenced by the sun's off hours. Drying uniformity may be enhanced by using the hybrid solar-thermal technique that provides uniform operation conditions. The present work aims to evaluate the hybrid solar-thermal dryer that uses a desiccant dehumidifier based on the uniformity of process air temperature and humidity. The desiccant regeneration process has been assessed based on the temperature and humidity of the regeneration air. Power saving due to hybrid technique usage has been analyzed. The drying process has been conducted using 5 kg of red chili. The rehydration ratio of the product has been tested as an indication of product quality which is a key parameter for dryer performance. The results revealed that the process air at the drying cabinet inlet has a 95% relative thermal uniformity with a 0.95 standard deviation in </span></span>absolute humidity. The hybrid technique has helped to achieve around 67% power saving while only 22% of power has been held when operating with solar mode. In comparison to other techniques the current hybrid dryer showed better product quality. The current results could develop the solar drying industry in terms of homogeneous quality-product.</p></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"262 \",\"pages\":\"Article 111880\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X23005133\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X23005133","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Assessment of hybrid solar-thermal multi-chamber dryer integrated with desiccant dehumidifier for uniform drying
Dried food industry consumes a significant amount of energy which requires more attention to renewable energy resources. Non-uniform solar drying has been deemed a drawback of solar dryer commercialization due to low-quality products influenced by the sun's off hours. Drying uniformity may be enhanced by using the hybrid solar-thermal technique that provides uniform operation conditions. The present work aims to evaluate the hybrid solar-thermal dryer that uses a desiccant dehumidifier based on the uniformity of process air temperature and humidity. The desiccant regeneration process has been assessed based on the temperature and humidity of the regeneration air. Power saving due to hybrid technique usage has been analyzed. The drying process has been conducted using 5 kg of red chili. The rehydration ratio of the product has been tested as an indication of product quality which is a key parameter for dryer performance. The results revealed that the process air at the drying cabinet inlet has a 95% relative thermal uniformity with a 0.95 standard deviation in absolute humidity. The hybrid technique has helped to achieve around 67% power saving while only 22% of power has been held when operating with solar mode. In comparison to other techniques the current hybrid dryer showed better product quality. The current results could develop the solar drying industry in terms of homogeneous quality-product.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass