组织工程用海藻酸钠的生理化学和生物学特性研究

IF 0.5 Q4 ENGINEERING, BIOMEDICAL
I. A. Kadhim
{"title":"组织工程用海藻酸钠的生理化学和生物学特性研究","authors":"I. A. Kadhim","doi":"10.4028/p-a7ygw7","DOIUrl":null,"url":null,"abstract":"The current study involves synthesis of a composite films of sodium alginate (Alg), polyvinylalcohol and NanoGraphene oxide (GO) for tissue engineering applications. Solvent casting was used to make the polymeric composite films (Alg-Pva-Go), which may exhibit a synergic activity of the components for tissue repair. The influence of various GO concentrations on the films properties was also investigated. The scaffold has outstanding physicochemical and biological properties. The composite film's high swelling degree and contact angle reveals its high hydrophilicity, making it appropriate for tissue engineering. The antimicrobial activity on Staphylococcus aureus were studied. Furthermore, the antimicrobial test showed that the films composite was resistant to S. aureus. Seeding (AD-MSC) cells into the composite films exhibited an increase in cell adhesion and proliferation when compared to the Alginate and Polyvinylalcohol film in vitro experiments, indicating that the GO has a good influence on the films characteristics, which can utilization in tissue engineering applications.","PeriodicalId":15161,"journal":{"name":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Physochimechal and Biological Properties of Composite Sodium Alginate for Tissue Engineering\",\"authors\":\"I. A. Kadhim\",\"doi\":\"10.4028/p-a7ygw7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study involves synthesis of a composite films of sodium alginate (Alg), polyvinylalcohol and NanoGraphene oxide (GO) for tissue engineering applications. Solvent casting was used to make the polymeric composite films (Alg-Pva-Go), which may exhibit a synergic activity of the components for tissue repair. The influence of various GO concentrations on the films properties was also investigated. The scaffold has outstanding physicochemical and biological properties. The composite film's high swelling degree and contact angle reveals its high hydrophilicity, making it appropriate for tissue engineering. The antimicrobial activity on Staphylococcus aureus were studied. Furthermore, the antimicrobial test showed that the films composite was resistant to S. aureus. Seeding (AD-MSC) cells into the composite films exhibited an increase in cell adhesion and proliferation when compared to the Alginate and Polyvinylalcohol film in vitro experiments, indicating that the GO has a good influence on the films characteristics, which can utilization in tissue engineering applications.\",\"PeriodicalId\":15161,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-a7ygw7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-a7ygw7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目前的研究涉及合成海藻酸钠(Alg)、聚乙烯醇和氧化石墨烯(GO)的复合膜,用于组织工程应用。采用溶剂铸造法制备了聚类复合膜(Alg-Pva-Go),其组分具有协同修复组织的活性。研究了不同氧化石墨烯浓度对膜性能的影响。该支架具有优异的物理化学和生物性能。该复合膜具有较高的膨胀度和接触角,具有较高的亲水性,适合用于组织工程。研究了其对金黄色葡萄球菌的抑菌活性。此外,抗菌试验表明复合膜对金黄色葡萄球菌具有耐药性。体外实验表明,与海藻酸盐和聚乙烯醇膜相比,将AD-MSC细胞植入复合膜中,细胞的粘附能力和增殖能力均有所提高,表明氧化石墨烯对复合膜的特性有良好的影响,可用于组织工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Physochimechal and Biological Properties of Composite Sodium Alginate for Tissue Engineering
The current study involves synthesis of a composite films of sodium alginate (Alg), polyvinylalcohol and NanoGraphene oxide (GO) for tissue engineering applications. Solvent casting was used to make the polymeric composite films (Alg-Pva-Go), which may exhibit a synergic activity of the components for tissue repair. The influence of various GO concentrations on the films properties was also investigated. The scaffold has outstanding physicochemical and biological properties. The composite film's high swelling degree and contact angle reveals its high hydrophilicity, making it appropriate for tissue engineering. The antimicrobial activity on Staphylococcus aureus were studied. Furthermore, the antimicrobial test showed that the films composite was resistant to S. aureus. Seeding (AD-MSC) cells into the composite films exhibited an increase in cell adhesion and proliferation when compared to the Alginate and Polyvinylalcohol film in vitro experiments, indicating that the GO has a good influence on the films characteristics, which can utilization in tissue engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
73
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信