{"title":"受限航道中未知动力欠驱动船舶的数据驱动模型预测控制","authors":"Shijie Li, Chengqi Xu, Jialun Liu","doi":"10.1017/S0373463322000522","DOIUrl":null,"url":null,"abstract":"Abstract Inland waterway transportation is one of the most important means to transport cargo in rivers and canals. To facilitate autonomous navigation for ships in inland waterways, this paper proposes a data-driven approach for predictions and control of underactuated ships with unknown dynamics, which integrates model predictive control (MPC) with an iterative learning control (ILC) scheme. In each iteration, kernel-based linear regressors are used to identify the relations between the evolution of ship states and control inputs based on the stored data from previous iterations and the collected data during operation, so as to build the system prediction model. The data are dynamically used to fix the prediction model over iterations, as well as to improve the controller performance until it converges. The proposed approach does not require prior knowledge regarding the hydrodynamic coefficients and ship parameters, but learns from the data instead. In addition, it exploits the advantages of MPC in handling constraints with minimised overall cost. Simulation results show that the controller could start from a nominal, linear data-driven ship model and then learn to reduce the path-following errors based on the data obtained over iterations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven model predictive control of underactuated ships with unknown dynamics in confined waterways\",\"authors\":\"Shijie Li, Chengqi Xu, Jialun Liu\",\"doi\":\"10.1017/S0373463322000522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Inland waterway transportation is one of the most important means to transport cargo in rivers and canals. To facilitate autonomous navigation for ships in inland waterways, this paper proposes a data-driven approach for predictions and control of underactuated ships with unknown dynamics, which integrates model predictive control (MPC) with an iterative learning control (ILC) scheme. In each iteration, kernel-based linear regressors are used to identify the relations between the evolution of ship states and control inputs based on the stored data from previous iterations and the collected data during operation, so as to build the system prediction model. The data are dynamically used to fix the prediction model over iterations, as well as to improve the controller performance until it converges. The proposed approach does not require prior knowledge regarding the hydrodynamic coefficients and ship parameters, but learns from the data instead. In addition, it exploits the advantages of MPC in handling constraints with minimised overall cost. Simulation results show that the controller could start from a nominal, linear data-driven ship model and then learn to reduce the path-following errors based on the data obtained over iterations.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0373463322000522\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463322000522","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Data-driven model predictive control of underactuated ships with unknown dynamics in confined waterways
Abstract Inland waterway transportation is one of the most important means to transport cargo in rivers and canals. To facilitate autonomous navigation for ships in inland waterways, this paper proposes a data-driven approach for predictions and control of underactuated ships with unknown dynamics, which integrates model predictive control (MPC) with an iterative learning control (ILC) scheme. In each iteration, kernel-based linear regressors are used to identify the relations between the evolution of ship states and control inputs based on the stored data from previous iterations and the collected data during operation, so as to build the system prediction model. The data are dynamically used to fix the prediction model over iterations, as well as to improve the controller performance until it converges. The proposed approach does not require prior knowledge regarding the hydrodynamic coefficients and ship parameters, but learns from the data instead. In addition, it exploits the advantages of MPC in handling constraints with minimised overall cost. Simulation results show that the controller could start from a nominal, linear data-driven ship model and then learn to reduce the path-following errors based on the data obtained over iterations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.