Zhuangzhuang Zhang , Jin Li , Ruihong Yu , Xinghui Xia , Heyang Sun , Changwei Lu , Xixi Lu
{"title":"含沉水植被的浅富营养化湖泊CH4排放的显著月变化和日变化","authors":"Zhuangzhuang Zhang , Jin Li , Ruihong Yu , Xinghui Xia , Heyang Sun , Changwei Lu , Xixi Lu","doi":"10.1016/j.aquabot.2023.103670","DOIUrl":null,"url":null,"abstract":"<div><p>Shallow eutrophic lakes with submerged aquatic vegetation (SAV) are a large source of atmospheric methane (CH<sub>4</sub>) emissions. However, current estimates of CH<sub>4</sub> emissions from lakes are uncertain owing to the lack of data on the diel and monthly variability of CH<sub>4</sub> emissions. In this study, we conducted monthly diel measurements in Ulansuhai Lake, China during the ice-free period (April to October, 2019) to determine the diel and monthly variability of CH<sub>4</sub> emissions. The diffusive CH<sub>4</sub> emission flux (FCH<sub>4d</sub>) from June to September was significantly higher (∼5- to 10-fold) than that from April, May, and October, accounting for > 92% of the total emissions. Daytime measurements would overestimate emissions if extrapolated to the whole day because FCH<sub>4d</sub> during daytime was higher than that during nighttime. Mean daily FCH<sub>4d</sub> emission estimates are overestimated by 25%, ranging from 11% in summer to 46% in spring based solely on daytime measurement. The sampling sites were net sources of CH<sub>4</sub> emissions, with total FCH<sub>4</sub> of 9.74 ± 9.06 mmol m<sup>−2</sup> d<sup>−1</sup>. FCH<sub>4d</sub> increased sharply when the water temperature was above 20 °C. FCH<sub>4</sub> (CO<sub>2</sub> eq) accounted for over 90% of the total greenhouse gas emissions (CH<sub>4</sub> plus CO<sub>2</sub>), with the majority occurring from June to September. Our findings indicate that diel and monthly variations should be considered for more accurate estimation of CH<sub>4</sub> emissions from the lakes with SAV.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Significant monthly and diel variations of CH4 emission from a shallow eutrophic lake with submerged aquatic vegetation\",\"authors\":\"Zhuangzhuang Zhang , Jin Li , Ruihong Yu , Xinghui Xia , Heyang Sun , Changwei Lu , Xixi Lu\",\"doi\":\"10.1016/j.aquabot.2023.103670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Shallow eutrophic lakes with submerged aquatic vegetation (SAV) are a large source of atmospheric methane (CH<sub>4</sub>) emissions. However, current estimates of CH<sub>4</sub> emissions from lakes are uncertain owing to the lack of data on the diel and monthly variability of CH<sub>4</sub> emissions. In this study, we conducted monthly diel measurements in Ulansuhai Lake, China during the ice-free period (April to October, 2019) to determine the diel and monthly variability of CH<sub>4</sub> emissions. The diffusive CH<sub>4</sub> emission flux (FCH<sub>4d</sub>) from June to September was significantly higher (∼5- to 10-fold) than that from April, May, and October, accounting for > 92% of the total emissions. Daytime measurements would overestimate emissions if extrapolated to the whole day because FCH<sub>4d</sub> during daytime was higher than that during nighttime. Mean daily FCH<sub>4d</sub> emission estimates are overestimated by 25%, ranging from 11% in summer to 46% in spring based solely on daytime measurement. The sampling sites were net sources of CH<sub>4</sub> emissions, with total FCH<sub>4</sub> of 9.74 ± 9.06 mmol m<sup>−2</sup> d<sup>−1</sup>. FCH<sub>4d</sub> increased sharply when the water temperature was above 20 °C. FCH<sub>4</sub> (CO<sub>2</sub> eq) accounted for over 90% of the total greenhouse gas emissions (CH<sub>4</sub> plus CO<sub>2</sub>), with the majority occurring from June to September. Our findings indicate that diel and monthly variations should be considered for more accurate estimation of CH<sub>4</sub> emissions from the lakes with SAV.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304377023000554\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304377023000554","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Significant monthly and diel variations of CH4 emission from a shallow eutrophic lake with submerged aquatic vegetation
Shallow eutrophic lakes with submerged aquatic vegetation (SAV) are a large source of atmospheric methane (CH4) emissions. However, current estimates of CH4 emissions from lakes are uncertain owing to the lack of data on the diel and monthly variability of CH4 emissions. In this study, we conducted monthly diel measurements in Ulansuhai Lake, China during the ice-free period (April to October, 2019) to determine the diel and monthly variability of CH4 emissions. The diffusive CH4 emission flux (FCH4d) from June to September was significantly higher (∼5- to 10-fold) than that from April, May, and October, accounting for > 92% of the total emissions. Daytime measurements would overestimate emissions if extrapolated to the whole day because FCH4d during daytime was higher than that during nighttime. Mean daily FCH4d emission estimates are overestimated by 25%, ranging from 11% in summer to 46% in spring based solely on daytime measurement. The sampling sites were net sources of CH4 emissions, with total FCH4 of 9.74 ± 9.06 mmol m−2 d−1. FCH4d increased sharply when the water temperature was above 20 °C. FCH4 (CO2 eq) accounted for over 90% of the total greenhouse gas emissions (CH4 plus CO2), with the majority occurring from June to September. Our findings indicate that diel and monthly variations should be considered for more accurate estimation of CH4 emissions from the lakes with SAV.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.