Luis Portilla, Jianwen Zhao, Jing Zhao, L. Occhipinti, V. Pecunia
{"title":"具有混合纳米介质的双极性碳纳米管晶体管,用于低压类cmos电子器件","authors":"Luis Portilla, Jianwen Zhao, Jing Zhao, L. Occhipinti, V. Pecunia","doi":"10.1088/2399-1984/abf6b1","DOIUrl":null,"url":null,"abstract":"The proliferation of place-and-forget devices driven by the exponentially-growing Internet of Things industry has created a demand for low-voltage thin-film transistor (TFT) electronics based on solution-processible semiconductors. Amongst solution-processible technologies, TFTs based on semiconducting single-walled carbon nanotubes (sc-SWCNTs) are a promising candidate owing to their comparatively high current driving capability in their above-threshold region at low voltages, which is desirable for applications with constraints on supply voltage and switching speed. Low-voltage above-threshold operation in sc-SWCNTs is customarily achieved by using high-capacitance-density gate dielectrics such as metal-oxides fabricated via atomic layer deposition (ALD) and ion-gels. These are unattractive, as ALD requires complex-processing or exotic precursors, while ion-gels lead to slower devices with poor stability. This work demonstrates the fabrication of low-voltage above-threshold sc-SWCNTs TFTs based on a high-capacitance-density hybrid nanodielectric, which is composed of a readily-made AlO x nanolayer and a solution-processed self-assembled monolayer (SAM). The resultant TFTs can withstand a gate-channel voltage of 1–2 V, which ensures their above-threshold operation with balanced ambipolar behavior and electron/hole mobilities of 7 cm2 V−1 s−1. Key to achieving balanced ambipolarity is the mitigation of environmental factors via the encapsulation of the devices with an optimized spin-on polymer coating, which preserves the inherent properties of the sc-SWCNTs. Such balanced ambipolarity enables the direct implementation of CMOS-like circuit configurations without the use of additional dopants, semiconductors or source/drain electrode metals. The resultant CMOS-like inverters operate in the above-threshold region with supply voltages in the 1–2 V range, and have positive noise margins, gain values surpassing 80 V/V, and a bandwidth exceeding 100 kHz. This reinforces SAM-based nanodielectrics as an attractive route to easy-to-fabricate sc-SWCNT TFTs that can operate in the above-threshold region and that can meet the demand for low-voltage TFT electronics requiring moderate speeds and higher driving currents for wearables and sensing applications.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Ambipolar carbon nanotube transistors with hybrid nanodielectric for low-voltage CMOS-like electronics\",\"authors\":\"Luis Portilla, Jianwen Zhao, Jing Zhao, L. Occhipinti, V. Pecunia\",\"doi\":\"10.1088/2399-1984/abf6b1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of place-and-forget devices driven by the exponentially-growing Internet of Things industry has created a demand for low-voltage thin-film transistor (TFT) electronics based on solution-processible semiconductors. Amongst solution-processible technologies, TFTs based on semiconducting single-walled carbon nanotubes (sc-SWCNTs) are a promising candidate owing to their comparatively high current driving capability in their above-threshold region at low voltages, which is desirable for applications with constraints on supply voltage and switching speed. Low-voltage above-threshold operation in sc-SWCNTs is customarily achieved by using high-capacitance-density gate dielectrics such as metal-oxides fabricated via atomic layer deposition (ALD) and ion-gels. These are unattractive, as ALD requires complex-processing or exotic precursors, while ion-gels lead to slower devices with poor stability. This work demonstrates the fabrication of low-voltage above-threshold sc-SWCNTs TFTs based on a high-capacitance-density hybrid nanodielectric, which is composed of a readily-made AlO x nanolayer and a solution-processed self-assembled monolayer (SAM). The resultant TFTs can withstand a gate-channel voltage of 1–2 V, which ensures their above-threshold operation with balanced ambipolar behavior and electron/hole mobilities of 7 cm2 V−1 s−1. Key to achieving balanced ambipolarity is the mitigation of environmental factors via the encapsulation of the devices with an optimized spin-on polymer coating, which preserves the inherent properties of the sc-SWCNTs. Such balanced ambipolarity enables the direct implementation of CMOS-like circuit configurations without the use of additional dopants, semiconductors or source/drain electrode metals. The resultant CMOS-like inverters operate in the above-threshold region with supply voltages in the 1–2 V range, and have positive noise margins, gain values surpassing 80 V/V, and a bandwidth exceeding 100 kHz. This reinforces SAM-based nanodielectrics as an attractive route to easy-to-fabricate sc-SWCNT TFTs that can operate in the above-threshold region and that can meet the demand for low-voltage TFT electronics requiring moderate speeds and higher driving currents for wearables and sensing applications.\",\"PeriodicalId\":54222,\"journal\":{\"name\":\"Nano Futures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Futures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-1984/abf6b1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Futures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2399-1984/abf6b1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Ambipolar carbon nanotube transistors with hybrid nanodielectric for low-voltage CMOS-like electronics
The proliferation of place-and-forget devices driven by the exponentially-growing Internet of Things industry has created a demand for low-voltage thin-film transistor (TFT) electronics based on solution-processible semiconductors. Amongst solution-processible technologies, TFTs based on semiconducting single-walled carbon nanotubes (sc-SWCNTs) are a promising candidate owing to their comparatively high current driving capability in their above-threshold region at low voltages, which is desirable for applications with constraints on supply voltage and switching speed. Low-voltage above-threshold operation in sc-SWCNTs is customarily achieved by using high-capacitance-density gate dielectrics such as metal-oxides fabricated via atomic layer deposition (ALD) and ion-gels. These are unattractive, as ALD requires complex-processing or exotic precursors, while ion-gels lead to slower devices with poor stability. This work demonstrates the fabrication of low-voltage above-threshold sc-SWCNTs TFTs based on a high-capacitance-density hybrid nanodielectric, which is composed of a readily-made AlO x nanolayer and a solution-processed self-assembled monolayer (SAM). The resultant TFTs can withstand a gate-channel voltage of 1–2 V, which ensures their above-threshold operation with balanced ambipolar behavior and electron/hole mobilities of 7 cm2 V−1 s−1. Key to achieving balanced ambipolarity is the mitigation of environmental factors via the encapsulation of the devices with an optimized spin-on polymer coating, which preserves the inherent properties of the sc-SWCNTs. Such balanced ambipolarity enables the direct implementation of CMOS-like circuit configurations without the use of additional dopants, semiconductors or source/drain electrode metals. The resultant CMOS-like inverters operate in the above-threshold region with supply voltages in the 1–2 V range, and have positive noise margins, gain values surpassing 80 V/V, and a bandwidth exceeding 100 kHz. This reinforces SAM-based nanodielectrics as an attractive route to easy-to-fabricate sc-SWCNT TFTs that can operate in the above-threshold region and that can meet the demand for low-voltage TFT electronics requiring moderate speeds and higher driving currents for wearables and sensing applications.
期刊介绍:
Nano Futures mission is to reflect the diverse and multidisciplinary field of nanoscience and nanotechnology that now brings together researchers from across physics, chemistry, biomedicine, materials science, engineering and industry.