{"title":"工业物联网混合云雾网络低时延低功耗路径计算方案","authors":"J. Ren, Peng Zhu, Zhiyuan Ren","doi":"10.23919/JCC.fa.2022-0705.202308","DOIUrl":null,"url":null,"abstract":"With the rapid development of the Industrial Internet of Things (IIoT), the traditional centralized cloud processing model has encountered the challenges of high communication latency and high energy consumption in handling industrial big data tasks. This paper aims to propose a low-latency and low-energy path computing scheme for the above problems. This scheme is based on the cloud-fog network architecture. The computing resources of fog network devices in the fog computing layer are used to complete task processing step by step during the data interaction from industrial field devices to the cloud center. A collaborative scheduling strategy based on the particle diversity discrete binary particle swarm optimization (PDBPSO) algorithm is proposed to deploy manufacturing tasks to the fog computing layer reasonably. The task in the form of a directed acyclic graph (DAG) is mapped to a factory fog network in the form of an undirected graph (UG) to find the appropriate computing path for the task, significantly reducing the task processing latency under energy consumption constraints. Simulation experiments show that this scheme's latency performance outperforms the strategy that tasks are wholly offloaded to the cloud and the strategy that tasks are entirely offloaded to the edge equipment.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"20 1","pages":"1-16"},"PeriodicalIF":3.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path computing scheme with low-latency and low-power in hybrid cloud-fog network for IIoT\",\"authors\":\"J. Ren, Peng Zhu, Zhiyuan Ren\",\"doi\":\"10.23919/JCC.fa.2022-0705.202308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of the Industrial Internet of Things (IIoT), the traditional centralized cloud processing model has encountered the challenges of high communication latency and high energy consumption in handling industrial big data tasks. This paper aims to propose a low-latency and low-energy path computing scheme for the above problems. This scheme is based on the cloud-fog network architecture. The computing resources of fog network devices in the fog computing layer are used to complete task processing step by step during the data interaction from industrial field devices to the cloud center. A collaborative scheduling strategy based on the particle diversity discrete binary particle swarm optimization (PDBPSO) algorithm is proposed to deploy manufacturing tasks to the fog computing layer reasonably. The task in the form of a directed acyclic graph (DAG) is mapped to a factory fog network in the form of an undirected graph (UG) to find the appropriate computing path for the task, significantly reducing the task processing latency under energy consumption constraints. Simulation experiments show that this scheme's latency performance outperforms the strategy that tasks are wholly offloaded to the cloud and the strategy that tasks are entirely offloaded to the edge equipment.\",\"PeriodicalId\":9814,\"journal\":{\"name\":\"China Communications\",\"volume\":\"20 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/JCC.fa.2022-0705.202308\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/JCC.fa.2022-0705.202308","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Path computing scheme with low-latency and low-power in hybrid cloud-fog network for IIoT
With the rapid development of the Industrial Internet of Things (IIoT), the traditional centralized cloud processing model has encountered the challenges of high communication latency and high energy consumption in handling industrial big data tasks. This paper aims to propose a low-latency and low-energy path computing scheme for the above problems. This scheme is based on the cloud-fog network architecture. The computing resources of fog network devices in the fog computing layer are used to complete task processing step by step during the data interaction from industrial field devices to the cloud center. A collaborative scheduling strategy based on the particle diversity discrete binary particle swarm optimization (PDBPSO) algorithm is proposed to deploy manufacturing tasks to the fog computing layer reasonably. The task in the form of a directed acyclic graph (DAG) is mapped to a factory fog network in the form of an undirected graph (UG) to find the appropriate computing path for the task, significantly reducing the task processing latency under energy consumption constraints. Simulation experiments show that this scheme's latency performance outperforms the strategy that tasks are wholly offloaded to the cloud and the strategy that tasks are entirely offloaded to the edge equipment.
期刊介绍:
China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide.
The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology.
China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.