{"title":"商业纯钛改性增强腐蚀行为和成骨细胞反应的ECAP生物医学应用","authors":"P. Hashemi, E. Borhani, M. Nourbakhsh","doi":"10.1177/22808000221095234","DOIUrl":null,"url":null,"abstract":"When it comes to using bio-metals, the chemical and biocompatibility properties of titanium led to its widespread use in biomedical implants. However, pure titanium possesses lower mechanical properties than Ti alloys containing cytotoxic elements. Severe plastic deformation (SPD) techniques were able to cause a significant strength increase, corrosion behavior improvement, and the release of the alloying elements. In this study, the ECAP process was performed on commercially pure titanium with a square cross-section at two and four passes, which resulted in a finer grain size and a more uniform microstructure. In order to improve cell behaviors, etch treatment was performed to produce nano-rough and nano-texture surfaces for all Ti samples. The effect of surface etching on corrosion, surface roughness, and cell behaviors on ECAP and untreated samples was also investigated. Optical/Field Emission Scanning Electron Microscopy, Atomic Force Microscopy, and X-Ray Diffraction were used to study the microstructural characterizations of samples. In addition, the impact of grain structure on the contact angle, electrochemical corrosion behavior, osteoblast response, and cell viability was investigated. The titanium that was ECAPed four times provided finer grains (200 nm) than the unprocessed sample (25 µm). The potentiodynamic polarization test revealed that corrosion resistance of ECAPed samples was enhanced, which was associated with grain refinement, affecting the passive film formation. Corrosion resistance and wettability experienced an apparent increase after each ECAP pass. In conclusion, improvement of grain size and surface roughness was due to the simultaneous effect of ECAP and etching treatment that led to the osteoblast response and cellular activity of samples.","PeriodicalId":51074,"journal":{"name":"Journal of Applied Biomaterials & Biomechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Commercially pure titanium modification to enhance corrosion behavior and osteoblast response by ECAP for biomedical applications\",\"authors\":\"P. Hashemi, E. Borhani, M. Nourbakhsh\",\"doi\":\"10.1177/22808000221095234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When it comes to using bio-metals, the chemical and biocompatibility properties of titanium led to its widespread use in biomedical implants. However, pure titanium possesses lower mechanical properties than Ti alloys containing cytotoxic elements. Severe plastic deformation (SPD) techniques were able to cause a significant strength increase, corrosion behavior improvement, and the release of the alloying elements. In this study, the ECAP process was performed on commercially pure titanium with a square cross-section at two and four passes, which resulted in a finer grain size and a more uniform microstructure. In order to improve cell behaviors, etch treatment was performed to produce nano-rough and nano-texture surfaces for all Ti samples. The effect of surface etching on corrosion, surface roughness, and cell behaviors on ECAP and untreated samples was also investigated. Optical/Field Emission Scanning Electron Microscopy, Atomic Force Microscopy, and X-Ray Diffraction were used to study the microstructural characterizations of samples. In addition, the impact of grain structure on the contact angle, electrochemical corrosion behavior, osteoblast response, and cell viability was investigated. The titanium that was ECAPed four times provided finer grains (200 nm) than the unprocessed sample (25 µm). The potentiodynamic polarization test revealed that corrosion resistance of ECAPed samples was enhanced, which was associated with grain refinement, affecting the passive film formation. Corrosion resistance and wettability experienced an apparent increase after each ECAP pass. In conclusion, improvement of grain size and surface roughness was due to the simultaneous effect of ECAP and etching treatment that led to the osteoblast response and cellular activity of samples.\",\"PeriodicalId\":51074,\"journal\":{\"name\":\"Journal of Applied Biomaterials & Biomechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomaterials & Biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/22808000221095234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/22808000221095234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Commercially pure titanium modification to enhance corrosion behavior and osteoblast response by ECAP for biomedical applications
When it comes to using bio-metals, the chemical and biocompatibility properties of titanium led to its widespread use in biomedical implants. However, pure titanium possesses lower mechanical properties than Ti alloys containing cytotoxic elements. Severe plastic deformation (SPD) techniques were able to cause a significant strength increase, corrosion behavior improvement, and the release of the alloying elements. In this study, the ECAP process was performed on commercially pure titanium with a square cross-section at two and four passes, which resulted in a finer grain size and a more uniform microstructure. In order to improve cell behaviors, etch treatment was performed to produce nano-rough and nano-texture surfaces for all Ti samples. The effect of surface etching on corrosion, surface roughness, and cell behaviors on ECAP and untreated samples was also investigated. Optical/Field Emission Scanning Electron Microscopy, Atomic Force Microscopy, and X-Ray Diffraction were used to study the microstructural characterizations of samples. In addition, the impact of grain structure on the contact angle, electrochemical corrosion behavior, osteoblast response, and cell viability was investigated. The titanium that was ECAPed four times provided finer grains (200 nm) than the unprocessed sample (25 µm). The potentiodynamic polarization test revealed that corrosion resistance of ECAPed samples was enhanced, which was associated with grain refinement, affecting the passive film formation. Corrosion resistance and wettability experienced an apparent increase after each ECAP pass. In conclusion, improvement of grain size and surface roughness was due to the simultaneous effect of ECAP and etching treatment that led to the osteoblast response and cellular activity of samples.