四阶非线性边值问题可解性的研究

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Haide Gou
{"title":"四阶非线性边值问题可解性的研究","authors":"Haide Gou","doi":"10.1515/ijnsns-2021-0052","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of the paper is devoted to proving the solvability of the fourth order boundary value problem. Firstly, we build a maximum principle for the corresponding linear equation, by the use of this maximum principle, we develop a monotone iterative technique in the presence of lower and upper solutions to solve the nonlinear equation, secondly, the existence and uniqueness results for the problem is obtained. In addition, an example is presented to show the application of our main results.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on solvability of the fourth-order nonlinear boundary value problems\",\"authors\":\"Haide Gou\",\"doi\":\"10.1515/ijnsns-2021-0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose of the paper is devoted to proving the solvability of the fourth order boundary value problem. Firstly, we build a maximum principle for the corresponding linear equation, by the use of this maximum principle, we develop a monotone iterative technique in the presence of lower and upper solutions to solve the nonlinear equation, secondly, the existence and uniqueness results for the problem is obtained. In addition, an example is presented to show the application of our main results.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2021-0052\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0052","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文的目的是证明四阶边值问题的可解性。首先,我们为相应的线性方程建立了一个极大值原理,利用这个极大值原理发展了一种在存在上下解的情况下求解非线性方程的单调迭代技术,其次,得到了该问题的存在唯一性结果。此外,还举例说明了我们的主要结果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on solvability of the fourth-order nonlinear boundary value problems
Abstract The purpose of the paper is devoted to proving the solvability of the fourth order boundary value problem. Firstly, we build a maximum principle for the corresponding linear equation, by the use of this maximum principle, we develop a monotone iterative technique in the presence of lower and upper solutions to solve the nonlinear equation, secondly, the existence and uniqueness results for the problem is obtained. In addition, an example is presented to show the application of our main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信