{"title":"用于电动汽车房屋的屋顶光伏和电池储能并网的最佳规模","authors":"Sarah Merrington, Rahmat Khezri, Amin Mahmoudi","doi":"10.1049/stg2.12099","DOIUrl":null,"url":null,"abstract":"<p>A practical optimal sizing model is developed for grid-connected rooftop solar photovoltaic (PV) and battery energy storage (BES) of homes with electric vehicle (EV) to minimise the net present cost of electricity. Two system configurations, (1) PV-EV and (2) PV-BES-EV, are investigated for optimal sizing of PV and BES by creating new rule-based home energy management systems. The uncertainties of EV availability (arrival and departure times) and its initial state of charge, when arrives home, are incorporated using stochastic functions. The effect of popular EV models in the market is investigated on the optimal sizing and electricity cost of the customers. Several sensitivity analyses are adopted based on variations in the grid constrains, retail price and feed in tariff. Uncertainty analysis is provided based on the variations of insolation, temperature, and load to approve the optimal results of the developed model. A practical guideline is presented for residential customers in a typical grid-connected household to select the optimal capacity of PV or PV-BES system considering the model of EV. While the proposed optimization model is general and can be used for various case studies, real annual data of solar insolation, temperature, household's load, electricity prices, as well as PV and BES market data are used for an Australian case study. The developed optimal sizing model is also applied to residential households in different Australian States.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12099","citationCount":"0","resultStr":"{\"title\":\"Optimal sizing of grid-connected rooftop photovoltaic and battery energy storage for houses with electric vehicle\",\"authors\":\"Sarah Merrington, Rahmat Khezri, Amin Mahmoudi\",\"doi\":\"10.1049/stg2.12099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A practical optimal sizing model is developed for grid-connected rooftop solar photovoltaic (PV) and battery energy storage (BES) of homes with electric vehicle (EV) to minimise the net present cost of electricity. Two system configurations, (1) PV-EV and (2) PV-BES-EV, are investigated for optimal sizing of PV and BES by creating new rule-based home energy management systems. The uncertainties of EV availability (arrival and departure times) and its initial state of charge, when arrives home, are incorporated using stochastic functions. The effect of popular EV models in the market is investigated on the optimal sizing and electricity cost of the customers. Several sensitivity analyses are adopted based on variations in the grid constrains, retail price and feed in tariff. Uncertainty analysis is provided based on the variations of insolation, temperature, and load to approve the optimal results of the developed model. A practical guideline is presented for residential customers in a typical grid-connected household to select the optimal capacity of PV or PV-BES system considering the model of EV. While the proposed optimization model is general and can be used for various case studies, real annual data of solar insolation, temperature, household's load, electricity prices, as well as PV and BES market data are used for an Australian case study. The developed optimal sizing model is also applied to residential households in different Australian States.</p>\",\"PeriodicalId\":36490,\"journal\":{\"name\":\"IET Smart Grid\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12099\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Smart Grid\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/stg2.12099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Grid","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/stg2.12099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimal sizing of grid-connected rooftop photovoltaic and battery energy storage for houses with electric vehicle
A practical optimal sizing model is developed for grid-connected rooftop solar photovoltaic (PV) and battery energy storage (BES) of homes with electric vehicle (EV) to minimise the net present cost of electricity. Two system configurations, (1) PV-EV and (2) PV-BES-EV, are investigated for optimal sizing of PV and BES by creating new rule-based home energy management systems. The uncertainties of EV availability (arrival and departure times) and its initial state of charge, when arrives home, are incorporated using stochastic functions. The effect of popular EV models in the market is investigated on the optimal sizing and electricity cost of the customers. Several sensitivity analyses are adopted based on variations in the grid constrains, retail price and feed in tariff. Uncertainty analysis is provided based on the variations of insolation, temperature, and load to approve the optimal results of the developed model. A practical guideline is presented for residential customers in a typical grid-connected household to select the optimal capacity of PV or PV-BES system considering the model of EV. While the proposed optimization model is general and can be used for various case studies, real annual data of solar insolation, temperature, household's load, electricity prices, as well as PV and BES market data are used for an Australian case study. The developed optimal sizing model is also applied to residential households in different Australian States.