{"title":"混杂纤维增强混凝土耐久性研究","authors":"Srinivasa Rao Naraganti","doi":"10.46604/IJETI.2021.5019","DOIUrl":null,"url":null,"abstract":"Sisal has been reported as one of the promising fibers for cement composite applications. The durability of sisal fiber reinforced concrete (SFRC) and steel sisal fiber reinforced concrete (SSFRC) have not been reported. Water absorption, rapid chloride permeability, and acid attack tests are conducted on fibrous cement composites. Steel, polypropylene, and sisal fibers with a total volume of 0.50%, 1.00%, 1.25%, and 1.50% were used. Sisal at a content of 1.50% in SFRC increases the water absorption by 76%, but it is reduced to 30% for SSFRC with 0.2% of sisal content. SFRC and SSFRC show the increased permeability of 1.69% and 2.09% respectively. SFRC experiences the highest volume loss of 6.52%. SSFRC illustrates the resistance to the mass loss and compressive strength loss. In conclusion, untreated sisal in any form is found to be not advantageous for durable fibrous concrete structures.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Durability Study of Hybrid Fiber Reinforced Concrete\",\"authors\":\"Srinivasa Rao Naraganti\",\"doi\":\"10.46604/IJETI.2021.5019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sisal has been reported as one of the promising fibers for cement composite applications. The durability of sisal fiber reinforced concrete (SFRC) and steel sisal fiber reinforced concrete (SSFRC) have not been reported. Water absorption, rapid chloride permeability, and acid attack tests are conducted on fibrous cement composites. Steel, polypropylene, and sisal fibers with a total volume of 0.50%, 1.00%, 1.25%, and 1.50% were used. Sisal at a content of 1.50% in SFRC increases the water absorption by 76%, but it is reduced to 30% for SSFRC with 0.2% of sisal content. SFRC and SSFRC show the increased permeability of 1.69% and 2.09% respectively. SFRC experiences the highest volume loss of 6.52%. SSFRC illustrates the resistance to the mass loss and compressive strength loss. In conclusion, untreated sisal in any form is found to be not advantageous for durable fibrous concrete structures.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/IJETI.2021.5019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/IJETI.2021.5019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Durability Study of Hybrid Fiber Reinforced Concrete
Sisal has been reported as one of the promising fibers for cement composite applications. The durability of sisal fiber reinforced concrete (SFRC) and steel sisal fiber reinforced concrete (SSFRC) have not been reported. Water absorption, rapid chloride permeability, and acid attack tests are conducted on fibrous cement composites. Steel, polypropylene, and sisal fibers with a total volume of 0.50%, 1.00%, 1.25%, and 1.50% were used. Sisal at a content of 1.50% in SFRC increases the water absorption by 76%, but it is reduced to 30% for SSFRC with 0.2% of sisal content. SFRC and SSFRC show the increased permeability of 1.69% and 2.09% respectively. SFRC experiences the highest volume loss of 6.52%. SSFRC illustrates the resistance to the mass loss and compressive strength loss. In conclusion, untreated sisal in any form is found to be not advantageous for durable fibrous concrete structures.
期刊介绍:
The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.