Harry L Hébert, Mathilde M V Pascal, Blair H Smith, David Wynick, David L H Bennett
{"title":"大数据、大财团和痛苦:英国生物银行、PAINSTORM和DOLORisk","authors":"Harry L Hébert, Mathilde M V Pascal, Blair H Smith, David Wynick, David L H Bennett","doi":"10.1097/PR9.0000000000001086","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic pain (CP) is a common and often debilitating disorder that has major social and economic impacts. A subset of patients develop CP that significantly interferes with their activities of daily living and requires a high level of healthcare support. The challenge for treating physicians is in preventing the onset of refractory CP or effectively managing existing pain. To be able to do this, it is necessary to understand the risk factors, both genetic and environmental, for the onset of CP and response to treatment, as well as the pathogenesis of the disorder, which is highly heterogenous. However, studies of CP, particularly pain with neuropathic characteristics, have been hindered by a lack of consensus on phenotyping and data collection, making comparisons difficult. Furthermore, existing cohorts have suffered from small sample sizes meaning that analyses, especially genome-wide association studies, are insufficiently powered. The key to overcoming these issues is through the creation of large consortia such as DOLORisk and PAINSTORM and biorepositories, such as UK Biobank, where a common approach can be taken to CP phenotyping, which allows harmonisation across different cohorts and in turn increased study power. This review describes the approach that was used for studying neuropathic pain in DOLORisk and how this has informed current projects such as PAINSTORM, the rephenotyping of UK Biobank, and other endeavours. Moreover, an overview is provided of the outputs from these studies and the lessons learnt for future projects.</p>","PeriodicalId":52189,"journal":{"name":"Pain Reports","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10789453/pdf/","citationCount":"0","resultStr":"{\"title\":\"Big data, big consortia, and pain: UK Biobank, PAINSTORM, and DOLORisk.\",\"authors\":\"Harry L Hébert, Mathilde M V Pascal, Blair H Smith, David Wynick, David L H Bennett\",\"doi\":\"10.1097/PR9.0000000000001086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic pain (CP) is a common and often debilitating disorder that has major social and economic impacts. A subset of patients develop CP that significantly interferes with their activities of daily living and requires a high level of healthcare support. The challenge for treating physicians is in preventing the onset of refractory CP or effectively managing existing pain. To be able to do this, it is necessary to understand the risk factors, both genetic and environmental, for the onset of CP and response to treatment, as well as the pathogenesis of the disorder, which is highly heterogenous. However, studies of CP, particularly pain with neuropathic characteristics, have been hindered by a lack of consensus on phenotyping and data collection, making comparisons difficult. Furthermore, existing cohorts have suffered from small sample sizes meaning that analyses, especially genome-wide association studies, are insufficiently powered. The key to overcoming these issues is through the creation of large consortia such as DOLORisk and PAINSTORM and biorepositories, such as UK Biobank, where a common approach can be taken to CP phenotyping, which allows harmonisation across different cohorts and in turn increased study power. This review describes the approach that was used for studying neuropathic pain in DOLORisk and how this has informed current projects such as PAINSTORM, the rephenotyping of UK Biobank, and other endeavours. Moreover, an overview is provided of the outputs from these studies and the lessons learnt for future projects.</p>\",\"PeriodicalId\":52189,\"journal\":{\"name\":\"Pain Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10789453/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pain Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/PR9.0000000000001086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pain Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/PR9.0000000000001086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Big data, big consortia, and pain: UK Biobank, PAINSTORM, and DOLORisk.
Chronic pain (CP) is a common and often debilitating disorder that has major social and economic impacts. A subset of patients develop CP that significantly interferes with their activities of daily living and requires a high level of healthcare support. The challenge for treating physicians is in preventing the onset of refractory CP or effectively managing existing pain. To be able to do this, it is necessary to understand the risk factors, both genetic and environmental, for the onset of CP and response to treatment, as well as the pathogenesis of the disorder, which is highly heterogenous. However, studies of CP, particularly pain with neuropathic characteristics, have been hindered by a lack of consensus on phenotyping and data collection, making comparisons difficult. Furthermore, existing cohorts have suffered from small sample sizes meaning that analyses, especially genome-wide association studies, are insufficiently powered. The key to overcoming these issues is through the creation of large consortia such as DOLORisk and PAINSTORM and biorepositories, such as UK Biobank, where a common approach can be taken to CP phenotyping, which allows harmonisation across different cohorts and in turn increased study power. This review describes the approach that was used for studying neuropathic pain in DOLORisk and how this has informed current projects such as PAINSTORM, the rephenotyping of UK Biobank, and other endeavours. Moreover, an overview is provided of the outputs from these studies and the lessons learnt for future projects.