Clayton J. Harry, Sonia M. Messar, Erik J. Ragsdale
{"title":"多食线虫捕食结构的比较重建","authors":"Clayton J. Harry, Sonia M. Messar, Erik J. Ragsdale","doi":"10.1111/ede.12397","DOIUrl":null,"url":null,"abstract":"<p><i>Pristionchus pacificus</i> is a nematode model for the developmental genetics of morphological polyphenism, especially at the level of individual cells. Morphological polyphenism in this species includes an evolutionary novelty, moveable teeth, which have enabled predatory feeding in this species and others in its family (Diplogastridae). From transmission electron micrographs of serial thin sections through an adult hermaphrodite of <i>P. pacificus</i>, we three-dimensionally reconstructed all epithelial and myoepithelial cells and syncytia, corresponding to 74 nuclei, of its face, mouth, and pharynx. We found that the epithelia that produce the predatory morphology of <i>P. pacificus</i> are identical to <i>Caenorhabditis elegans</i> in the number of cell classes and nuclei. However, differences in cell form, spatial relationships, and nucleus position correlate with gross morphological differences from <i>C. elegans</i> and outgroups. Moreover, we identified fine-structural features, especially in the anteriormost pharyngeal muscles, that underlie the conspicuous, left-right asymmetry that characterizes the <i>P. pacificus</i> feeding apparatus. Our reconstruction provides an anatomical map for studying the genetics of polyphenism, feeding behavior, and the development of novel form in a satellite model to <i>C. elegans</i>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12397","citationCount":"5","resultStr":"{\"title\":\"Comparative reconstruction of the predatory feeding structures of the polyphenic nematode Pristionchus pacificus\",\"authors\":\"Clayton J. Harry, Sonia M. Messar, Erik J. Ragsdale\",\"doi\":\"10.1111/ede.12397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Pristionchus pacificus</i> is a nematode model for the developmental genetics of morphological polyphenism, especially at the level of individual cells. Morphological polyphenism in this species includes an evolutionary novelty, moveable teeth, which have enabled predatory feeding in this species and others in its family (Diplogastridae). From transmission electron micrographs of serial thin sections through an adult hermaphrodite of <i>P. pacificus</i>, we three-dimensionally reconstructed all epithelial and myoepithelial cells and syncytia, corresponding to 74 nuclei, of its face, mouth, and pharynx. We found that the epithelia that produce the predatory morphology of <i>P. pacificus</i> are identical to <i>Caenorhabditis elegans</i> in the number of cell classes and nuclei. However, differences in cell form, spatial relationships, and nucleus position correlate with gross morphological differences from <i>C. elegans</i> and outgroups. Moreover, we identified fine-structural features, especially in the anteriormost pharyngeal muscles, that underlie the conspicuous, left-right asymmetry that characterizes the <i>P. pacificus</i> feeding apparatus. Our reconstruction provides an anatomical map for studying the genetics of polyphenism, feeding behavior, and the development of novel form in a satellite model to <i>C. elegans</i>.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12397\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ede.12397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ede.12397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Comparative reconstruction of the predatory feeding structures of the polyphenic nematode Pristionchus pacificus
Pristionchus pacificus is a nematode model for the developmental genetics of morphological polyphenism, especially at the level of individual cells. Morphological polyphenism in this species includes an evolutionary novelty, moveable teeth, which have enabled predatory feeding in this species and others in its family (Diplogastridae). From transmission electron micrographs of serial thin sections through an adult hermaphrodite of P. pacificus, we three-dimensionally reconstructed all epithelial and myoepithelial cells and syncytia, corresponding to 74 nuclei, of its face, mouth, and pharynx. We found that the epithelia that produce the predatory morphology of P. pacificus are identical to Caenorhabditis elegans in the number of cell classes and nuclei. However, differences in cell form, spatial relationships, and nucleus position correlate with gross morphological differences from C. elegans and outgroups. Moreover, we identified fine-structural features, especially in the anteriormost pharyngeal muscles, that underlie the conspicuous, left-right asymmetry that characterizes the P. pacificus feeding apparatus. Our reconstruction provides an anatomical map for studying the genetics of polyphenism, feeding behavior, and the development of novel form in a satellite model to C. elegans.