接触流形LCS化上的伪全纯曲线

IF 0.5 4区 数学 Q3 MATHEMATICS
Y. Oh, Y. Savelyev
{"title":"接触流形LCS化上的伪全纯曲线","authors":"Y. Oh, Y. Savelyev","doi":"10.1515/advgeom-2023-0004","DOIUrl":null,"url":null,"abstract":"Abstract For each contact diffeomorphism ϕ : (Q, ξ) → (Q, ξ) of (Q, ξ), we equip its mapping torus Mϕ with a locally conformal symplectic form of Banyaga’s type, which we call the lcs mapping torus of the contact diffeomorphism ϕ. In the present paper, we consider the product Q × S1 = Mid (corresponding to ϕ = id) and develop basic analysis of the associated J-holomorphic curve equation, which has the form ∂ ˉ π w = 0 , w ∗ λ ∘ j = f ∗ d θ $$\\bar{\\partial}^{\\pi} w=0, \\quad w^{*} \\lambda \\circ j=f^{*} d \\theta$$ for the map u = (w, f) : Σ˙→Q×S1$\\dot{\\Sigma} \\rightarrow Q \\times S^{1}$for a λ-compatible almost complex structure J and a punctured Riemann surface (Σ˙,j).$(\\dot{\\Sigma}, j).$In particular, w is a contact instanton in the sense of [31], [32].We develop a scheme of treating the non-vanishing charge by introducing the notion of charge class in H1(Σ˙,Z)$H^{1}(\\dot{\\Sigma}, \\mathbb{Z})$and develop the geometric framework for the study of pseudoholomorphic curves, a correct choice of energy and the definition of moduli spaces towards the construction of a compactification of the moduli space on the lcs-fication of (Q, λ) (more generally on arbitrary locally conformal symplectic manifolds).","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"23 1","pages":"153 - 190"},"PeriodicalIF":0.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Pseudoholomorphic curves on the LCS-fication of contact manifolds\",\"authors\":\"Y. Oh, Y. Savelyev\",\"doi\":\"10.1515/advgeom-2023-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For each contact diffeomorphism ϕ : (Q, ξ) → (Q, ξ) of (Q, ξ), we equip its mapping torus Mϕ with a locally conformal symplectic form of Banyaga’s type, which we call the lcs mapping torus of the contact diffeomorphism ϕ. In the present paper, we consider the product Q × S1 = Mid (corresponding to ϕ = id) and develop basic analysis of the associated J-holomorphic curve equation, which has the form ∂ ˉ π w = 0 , w ∗ λ ∘ j = f ∗ d θ $$\\\\bar{\\\\partial}^{\\\\pi} w=0, \\\\quad w^{*} \\\\lambda \\\\circ j=f^{*} d \\\\theta$$ for the map u = (w, f) : Σ˙→Q×S1$\\\\dot{\\\\Sigma} \\\\rightarrow Q \\\\times S^{1}$for a λ-compatible almost complex structure J and a punctured Riemann surface (Σ˙,j).$(\\\\dot{\\\\Sigma}, j).$In particular, w is a contact instanton in the sense of [31], [32].We develop a scheme of treating the non-vanishing charge by introducing the notion of charge class in H1(Σ˙,Z)$H^{1}(\\\\dot{\\\\Sigma}, \\\\mathbb{Z})$and develop the geometric framework for the study of pseudoholomorphic curves, a correct choice of energy and the definition of moduli spaces towards the construction of a compactification of the moduli space on the lcs-fication of (Q, λ) (more generally on arbitrary locally conformal symplectic manifolds).\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":\"23 1\",\"pages\":\"153 - 190\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2023-0004\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

摘要对于每一个接触微分同胚:(Q,ξ)→ (Q,ξ)的(Q,ζ),我们用Banyaga类型的局部共形辛形式装备它的映射环面MΓ,我们称之为接触微分同胚的lcs映射环面Γ。在本文中,我们考虑乘积Q×S1=Mid(对应于ξ=id),并对相关的J全纯曲线方程进行了基本分析,该方程的形式为?πw=0,w*λ∘J=f*dθ$\bar{\pial}^{\pi}w=0,\quad w^{*}\lambda\circ J=f^{*}d\theta$$,对于映射u=(w,f):∑→Q×S1$\dot{\ Sigma}\rightarrow Q\times S^{1}$对于λ兼容的几乎复杂结构J和穿孔的黎曼曲面(∑*J)$(\dot{\ Sigma},j)$特别地,w是[31],[32]意义上的接触瞬子。我们通过在H1(∑*Z)$H^{1}(\dot{\ Sigma},\mathbb{Z})$中引入电荷类的概念,提出了一种处理非消失电荷的方案,并开发了研究伪全纯曲线的几何框架,能量的正确选择和模空间的定义,以构造(Q,λ)(更一般地,在任意局部共形辛流形上)的模空间的紧致化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pseudoholomorphic curves on the LCS-fication of contact manifolds
Abstract For each contact diffeomorphism ϕ : (Q, ξ) → (Q, ξ) of (Q, ξ), we equip its mapping torus Mϕ with a locally conformal symplectic form of Banyaga’s type, which we call the lcs mapping torus of the contact diffeomorphism ϕ. In the present paper, we consider the product Q × S1 = Mid (corresponding to ϕ = id) and develop basic analysis of the associated J-holomorphic curve equation, which has the form ∂ ˉ π w = 0 , w ∗ λ ∘ j = f ∗ d θ $$\bar{\partial}^{\pi} w=0, \quad w^{*} \lambda \circ j=f^{*} d \theta$$ for the map u = (w, f) : Σ˙→Q×S1$\dot{\Sigma} \rightarrow Q \times S^{1}$for a λ-compatible almost complex structure J and a punctured Riemann surface (Σ˙,j).$(\dot{\Sigma}, j).$In particular, w is a contact instanton in the sense of [31], [32].We develop a scheme of treating the non-vanishing charge by introducing the notion of charge class in H1(Σ˙,Z)$H^{1}(\dot{\Sigma}, \mathbb{Z})$and develop the geometric framework for the study of pseudoholomorphic curves, a correct choice of energy and the definition of moduli spaces towards the construction of a compactification of the moduli space on the lcs-fication of (Q, λ) (more generally on arbitrary locally conformal symplectic manifolds).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信