{"title":"具有相关射影向量场的里奇几乎孤子","authors":"Ramesh Sharma, Sharief Deshmukh","doi":"10.1515/advgeom-2021-0034","DOIUrl":null,"url":null,"abstract":"Abstract A Ricci almost soliton whose associated vector field is projective is shown to have vanishing Cotton tensor, divergence-free Bach tensor and Ricci tensor as conformal Killing. For the compact case, a sharp inequality is obtained in terms of scalar curvature.We show that every complete gradient Ricci soliton is isometric to the Riemannian product of a Euclidean space and an Einstein space. A complete K-contact Ricci almost soliton whose associated vector field is projective is compact Einstein and Sasakian.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Ricci almost solitons with associated projective vector field\",\"authors\":\"Ramesh Sharma, Sharief Deshmukh\",\"doi\":\"10.1515/advgeom-2021-0034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A Ricci almost soliton whose associated vector field is projective is shown to have vanishing Cotton tensor, divergence-free Bach tensor and Ricci tensor as conformal Killing. For the compact case, a sharp inequality is obtained in terms of scalar curvature.We show that every complete gradient Ricci soliton is isometric to the Riemannian product of a Euclidean space and an Einstein space. A complete K-contact Ricci almost soliton whose associated vector field is projective is compact Einstein and Sasakian.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2021-0034\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2021-0034","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Ricci almost solitons with associated projective vector field
Abstract A Ricci almost soliton whose associated vector field is projective is shown to have vanishing Cotton tensor, divergence-free Bach tensor and Ricci tensor as conformal Killing. For the compact case, a sharp inequality is obtained in terms of scalar curvature.We show that every complete gradient Ricci soliton is isometric to the Riemannian product of a Euclidean space and an Einstein space. A complete K-contact Ricci almost soliton whose associated vector field is projective is compact Einstein and Sasakian.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.