{"title":"基于知识图谱的移动众测时空任务分配模型","authors":"Bingxu Zhao, Hongbin Dong, Dongmei Yang","doi":"10.3390/smartcities6040090","DOIUrl":null,"url":null,"abstract":"With the increasing popularity of wireless networks and the development of smart cities, the Mobile Crowdsourcing System (MCS) has emerged as a framework for automatically assigning spatiotemporal tasks to workers. The study of mobile crowdsourcing makes a valuable research contribution to community service and urban route planning. However, previous algorithms have faced challenges in effectively addressing task allocation issues with massive spatial data. In this paper, we propose a novel solution to the spatiotemporal task allocation problem using a knowledge graph. Firstly, we construct a robust spatiotemporal knowledge graph (STKG) and employ a knowledge graph embedding algorithm to learn the representations of nodes and edges. Next, we utilize these representations to build a task transition graph, which is a weighted and learning-based graph that highlights important neighbors for each task. We then apply a simplified Graph Convolutional Network (GCN) and an RNN-based model to enhance task representations and capture sequential transition patterns on the task transition graph. Furthermore, we design a similarity function to facilitate personalized task allocation. Through experimental results, we demonstrate that our solution achieves higher accuracy compared to existing approaches when tested on three real datasets. These research findings are significant as they contribute to an 18.01% improvement in spatiotemporal task allocation accuracy.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Spatio-Temporal Task Allocation Model in Mobile Crowdsensing Based on Knowledge Graph\",\"authors\":\"Bingxu Zhao, Hongbin Dong, Dongmei Yang\",\"doi\":\"10.3390/smartcities6040090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing popularity of wireless networks and the development of smart cities, the Mobile Crowdsourcing System (MCS) has emerged as a framework for automatically assigning spatiotemporal tasks to workers. The study of mobile crowdsourcing makes a valuable research contribution to community service and urban route planning. However, previous algorithms have faced challenges in effectively addressing task allocation issues with massive spatial data. In this paper, we propose a novel solution to the spatiotemporal task allocation problem using a knowledge graph. Firstly, we construct a robust spatiotemporal knowledge graph (STKG) and employ a knowledge graph embedding algorithm to learn the representations of nodes and edges. Next, we utilize these representations to build a task transition graph, which is a weighted and learning-based graph that highlights important neighbors for each task. We then apply a simplified Graph Convolutional Network (GCN) and an RNN-based model to enhance task representations and capture sequential transition patterns on the task transition graph. Furthermore, we design a similarity function to facilitate personalized task allocation. Through experimental results, we demonstrate that our solution achieves higher accuracy compared to existing approaches when tested on three real datasets. These research findings are significant as they contribute to an 18.01% improvement in spatiotemporal task allocation accuracy.\",\"PeriodicalId\":34482,\"journal\":{\"name\":\"Smart Cities\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Cities\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/smartcities6040090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Cities","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/smartcities6040090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Spatio-Temporal Task Allocation Model in Mobile Crowdsensing Based on Knowledge Graph
With the increasing popularity of wireless networks and the development of smart cities, the Mobile Crowdsourcing System (MCS) has emerged as a framework for automatically assigning spatiotemporal tasks to workers. The study of mobile crowdsourcing makes a valuable research contribution to community service and urban route planning. However, previous algorithms have faced challenges in effectively addressing task allocation issues with massive spatial data. In this paper, we propose a novel solution to the spatiotemporal task allocation problem using a knowledge graph. Firstly, we construct a robust spatiotemporal knowledge graph (STKG) and employ a knowledge graph embedding algorithm to learn the representations of nodes and edges. Next, we utilize these representations to build a task transition graph, which is a weighted and learning-based graph that highlights important neighbors for each task. We then apply a simplified Graph Convolutional Network (GCN) and an RNN-based model to enhance task representations and capture sequential transition patterns on the task transition graph. Furthermore, we design a similarity function to facilitate personalized task allocation. Through experimental results, we demonstrate that our solution achieves higher accuracy compared to existing approaches when tested on three real datasets. These research findings are significant as they contribute to an 18.01% improvement in spatiotemporal task allocation accuracy.
期刊介绍:
Smart Cities (ISSN 2624-6511) provides an advanced forum for the dissemination of information on the science and technology of smart cities, publishing reviews, regular research papers (articles) and communications in all areas of research concerning smart cities. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible, with no restriction on the maximum length of the papers published so that all experimental results can be reproduced.