迈向计算极性拓扑电子学:SrTiO3/PbTiO3纳米线中极性涡旋态的多尺度神经网络量子分子动力学模拟

IF 4.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Thomas M Linker, S. Fukushima, R. Kalia, A. Krishnamoorthy, A. Nakano, K. Nomura, K. Shimamura, F. Shimojo, P. Vashishta
{"title":"迈向计算极性拓扑电子学:SrTiO3/PbTiO3纳米线中极性涡旋态的多尺度神经网络量子分子动力学模拟","authors":"Thomas M Linker, S. Fukushima, R. Kalia, A. Krishnamoorthy, A. Nakano, K. Nomura, K. Shimamura, F. Shimojo, P. Vashishta","doi":"10.3389/fnano.2022.884149","DOIUrl":null,"url":null,"abstract":"Recent discoveries of polar topological structures (e.g., skyrmions and merons) in ferroelectric/paraelectric heterostructures have opened a new field of polar topotronics. However, how complex interplay of photoexcitation, electric field and mechanical strain controls these topological structures remains elusive. To address this challenge, we have developed a computational approach at the nexus of machine learning and first-principles simulations. Our multiscale neural-network quantum molecular dynamics molecular mechanics approach achieves orders-of-magnitude faster computation, while maintaining quantum-mechanical accuracy for atoms within the region of interest. This approach has enabled us to investigate the dynamics of vortex states formed in PbTiO3 nanowires embedded in SrTiO3. We find topological switching of these vortex states to topologically trivial, uniformly polarized states using electric field and trivial domain-wall states using shear strain. These results, along with our earlier results on optical control of polar topology, suggest an exciting new avenue toward opto-electro-mechanical control of ultrafast, ultralow-power polar topotronic devices.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards computational polar-topotronics: Multiscale neural-network quantum molecular dynamics simulations of polar vortex states in SrTiO3/PbTiO3 nanowires\",\"authors\":\"Thomas M Linker, S. Fukushima, R. Kalia, A. Krishnamoorthy, A. Nakano, K. Nomura, K. Shimamura, F. Shimojo, P. Vashishta\",\"doi\":\"10.3389/fnano.2022.884149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent discoveries of polar topological structures (e.g., skyrmions and merons) in ferroelectric/paraelectric heterostructures have opened a new field of polar topotronics. However, how complex interplay of photoexcitation, electric field and mechanical strain controls these topological structures remains elusive. To address this challenge, we have developed a computational approach at the nexus of machine learning and first-principles simulations. Our multiscale neural-network quantum molecular dynamics molecular mechanics approach achieves orders-of-magnitude faster computation, while maintaining quantum-mechanical accuracy for atoms within the region of interest. This approach has enabled us to investigate the dynamics of vortex states formed in PbTiO3 nanowires embedded in SrTiO3. We find topological switching of these vortex states to topologically trivial, uniformly polarized states using electric field and trivial domain-wall states using shear strain. These results, along with our earlier results on optical control of polar topology, suggest an exciting new avenue toward opto-electro-mechanical control of ultrafast, ultralow-power polar topotronic devices.\",\"PeriodicalId\":34432,\"journal\":{\"name\":\"Frontiers in Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnano.2022.884149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnano.2022.884149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来在铁电/准电异质结构中发现的极性拓扑结构(如天子和介子)开辟了极性拓扑电子学的新领域。然而,光激发、电场和机械应变的复杂相互作用如何控制这些拓扑结构仍然是一个谜。为了应对这一挑战,我们在机器学习和第一原理模拟的联系上开发了一种计算方法。我们的多尺度神经网络量子分子动力学分子力学方法实现了数量级的快速计算,同时保持了感兴趣区域内原子的量子力学精度。这种方法使我们能够研究嵌入SrTiO3的PbTiO3纳米线中形成的涡流状态的动力学。我们发现这些涡旋态的拓扑转换为拓扑平凡的,均匀极化状态使用电场和平凡域壁状态使用剪切应变。这些结果,以及我们之前在极性拓扑光学控制方面的结果,为超快、超低功耗极性拓扑器件的光电机械控制提供了一条令人兴奋的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards computational polar-topotronics: Multiscale neural-network quantum molecular dynamics simulations of polar vortex states in SrTiO3/PbTiO3 nanowires
Recent discoveries of polar topological structures (e.g., skyrmions and merons) in ferroelectric/paraelectric heterostructures have opened a new field of polar topotronics. However, how complex interplay of photoexcitation, electric field and mechanical strain controls these topological structures remains elusive. To address this challenge, we have developed a computational approach at the nexus of machine learning and first-principles simulations. Our multiscale neural-network quantum molecular dynamics molecular mechanics approach achieves orders-of-magnitude faster computation, while maintaining quantum-mechanical accuracy for atoms within the region of interest. This approach has enabled us to investigate the dynamics of vortex states formed in PbTiO3 nanowires embedded in SrTiO3. We find topological switching of these vortex states to topologically trivial, uniformly polarized states using electric field and trivial domain-wall states using shear strain. These results, along with our earlier results on optical control of polar topology, suggest an exciting new avenue toward opto-electro-mechanical control of ultrafast, ultralow-power polar topotronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Nanotechnology
Frontiers in Nanotechnology Engineering-Electrical and Electronic Engineering
CiteScore
7.10
自引率
0.00%
发文量
96
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信