轮胎胶粉对土坝减渗效果的试验与数值评价

IF 1.5 Q2 ENGINEERING, MULTIDISCIPLINARY
Zahraa Khalid Shuhaib, S. Khassaf
{"title":"轮胎胶粉对土坝减渗效果的试验与数值评价","authors":"Zahraa Khalid Shuhaib, S. Khassaf","doi":"10.1515/eng-2022-0422","DOIUrl":null,"url":null,"abstract":"Abstract Tires waste is an undesirable urban industry surplus that has grown worldwide yearly. Because of its seals, this material may be used in earth dams, one option for disposing of this waste. Since this is the main objective of this study, an experiment on a soil sample with various ratios of rubber powder has been conducted to better comprehend the impact of tire rubber powder (TRP) on the seepage rate in earthen dams. This study used physical and numerical models to investigate seepage through earth dams. Analysis indicates that the plotted seepage line in SEEP/W software was comparable to the observed seepage line in the physical model. TRP was tested at concentrations of 15, 30, and 50%. The research demonstrates that there has been a noticeable improvement in reducing the seepage rate through the dam’s body; seepage was decreased by 11.28% when a 15% ratio was adopted, a far smaller impact than the other percentages. The proportion was consequently raised to 30%. The seepage rate was found to be reduced by 35.6%, and TRP with a 50% ratio showed excellent behavior in lowering the water level (phreatic line) from the core point to the downstream face D/S and reducing the seepage rate by 41.5%, producing significantly better results. The findings in SEEP/W software indicate that the relative error in seepage rate varies, averaging 11.8% for the first model, 12.18% for the second, 1.65% for the third, and 7.63% for the fourth. The first and second physical models’ seepage rate (relative inaccuracy) dramatically increased as a result of the presence of piping.","PeriodicalId":19512,"journal":{"name":"Open Engineering","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical evaluation of tire rubber powder effectiveness for reducing seepage rate in earth dams\",\"authors\":\"Zahraa Khalid Shuhaib, S. Khassaf\",\"doi\":\"10.1515/eng-2022-0422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Tires waste is an undesirable urban industry surplus that has grown worldwide yearly. Because of its seals, this material may be used in earth dams, one option for disposing of this waste. Since this is the main objective of this study, an experiment on a soil sample with various ratios of rubber powder has been conducted to better comprehend the impact of tire rubber powder (TRP) on the seepage rate in earthen dams. This study used physical and numerical models to investigate seepage through earth dams. Analysis indicates that the plotted seepage line in SEEP/W software was comparable to the observed seepage line in the physical model. TRP was tested at concentrations of 15, 30, and 50%. The research demonstrates that there has been a noticeable improvement in reducing the seepage rate through the dam’s body; seepage was decreased by 11.28% when a 15% ratio was adopted, a far smaller impact than the other percentages. The proportion was consequently raised to 30%. The seepage rate was found to be reduced by 35.6%, and TRP with a 50% ratio showed excellent behavior in lowering the water level (phreatic line) from the core point to the downstream face D/S and reducing the seepage rate by 41.5%, producing significantly better results. The findings in SEEP/W software indicate that the relative error in seepage rate varies, averaging 11.8% for the first model, 12.18% for the second, 1.65% for the third, and 7.63% for the fourth. The first and second physical models’ seepage rate (relative inaccuracy) dramatically increased as a result of the presence of piping.\",\"PeriodicalId\":19512,\"journal\":{\"name\":\"Open Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eng-2022-0422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eng-2022-0422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

轮胎废弃物是一个不受欢迎的城市工业剩余,每年在世界范围内增长。由于其密封性,这种材料可以用于土坝,这是处理这种废物的一种选择。由于这是本研究的主要目的,为了更好地了解轮胎橡胶粉(TRP)对土坝渗流速率的影响,我们对不同比例橡胶粉的土样进行了试验。本文采用物理模型和数值模型对土坝渗流进行了研究。分析表明,在SEEP/W软件中绘制的渗流线与物理模型中观测到的渗流线基本吻合。色氨酸浓度分别为15%、30%和50%。研究表明,在降低坝体渗流速度方面取得了显著成效;当采用15%的比例时,渗流减少了11.28%,影响远远小于其他百分比。这一比例因此提高到30%。结果表明,掺入比例为50%的TRP可使渗流速率降低35.6%,在降低岩心点至下游工作面D/S的水位(潜水线)、降低渗流速率41.5%方面表现优异,效果明显较好。SEEP/W软件计算结果表明,渗流率的相对误差各不相同,第一种模型平均误差为11.8%,第二种模型平均误差为12.18%,第三种模型平均误差为1.65%,第四种模型平均误差为7.63%。由于管道的存在,第一种和第二种物理模型的渗流速率(相对不准确性)显著增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and numerical evaluation of tire rubber powder effectiveness for reducing seepage rate in earth dams
Abstract Tires waste is an undesirable urban industry surplus that has grown worldwide yearly. Because of its seals, this material may be used in earth dams, one option for disposing of this waste. Since this is the main objective of this study, an experiment on a soil sample with various ratios of rubber powder has been conducted to better comprehend the impact of tire rubber powder (TRP) on the seepage rate in earthen dams. This study used physical and numerical models to investigate seepage through earth dams. Analysis indicates that the plotted seepage line in SEEP/W software was comparable to the observed seepage line in the physical model. TRP was tested at concentrations of 15, 30, and 50%. The research demonstrates that there has been a noticeable improvement in reducing the seepage rate through the dam’s body; seepage was decreased by 11.28% when a 15% ratio was adopted, a far smaller impact than the other percentages. The proportion was consequently raised to 30%. The seepage rate was found to be reduced by 35.6%, and TRP with a 50% ratio showed excellent behavior in lowering the water level (phreatic line) from the core point to the downstream face D/S and reducing the seepage rate by 41.5%, producing significantly better results. The findings in SEEP/W software indicate that the relative error in seepage rate varies, averaging 11.8% for the first model, 12.18% for the second, 1.65% for the third, and 7.63% for the fourth. The first and second physical models’ seepage rate (relative inaccuracy) dramatically increased as a result of the presence of piping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Engineering
Open Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
3.90
自引率
0.00%
发文量
52
审稿时长
30 weeks
期刊介绍: Open Engineering publishes research results of wide interest in emerging interdisciplinary and traditional engineering fields, including: electrical and computer engineering, civil and environmental engineering, mechanical and aerospace engineering, material science and engineering. The journal is designed to facilitate the exchange of innovative and interdisciplinary ideas between researchers from different countries. Open Engineering is a peer-reviewed, English language journal. Researchers from non-English speaking regions are provided with free language correction by scientists who are native speakers. Additionally, each published article is widely promoted to researchers working in the same field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信