下界HNN扩展的结构

Pub Date : 2023-08-10 DOI:10.1017/S001708952300023X
Paul Bennett, T. Jajcayová
{"title":"下界HNN扩展的结构","authors":"Paul Bennett, T. Jajcayová","doi":"10.1017/S001708952300023X","DOIUrl":null,"url":null,"abstract":"Abstract This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if \n$S^* = [ S;\\; U_1,U_2;\\; \\phi ]$\n is a lower bounded HNN extension then the maximal subgroups of \n$S^*$\n may be described using Bass-Serre theory, as the fundamental groups of certain graphs of groups defined from the \n$\\mathcal{D}$\n -classes of \n$S$\n , \n$U_1$\n and \n$U_2$\n . We then obtain a number of results concerning when inverse semigroup properties are preserved under the HNN extension construction. The properties considered are completely semisimpleness, having finite \n$\\mathcal{R}$\n -classes, residual finiteness, being \n$E$\n -unitary, and \n$0$\n - \n$E$\n -unitary. Examples are given, such as an HNN extension of a polycylic inverse monoid.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the structure of lower bounded HNN extensions\",\"authors\":\"Paul Bennett, T. Jajcayová\",\"doi\":\"10.1017/S001708952300023X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if \\n$S^* = [ S;\\\\; U_1,U_2;\\\\; \\\\phi ]$\\n is a lower bounded HNN extension then the maximal subgroups of \\n$S^*$\\n may be described using Bass-Serre theory, as the fundamental groups of certain graphs of groups defined from the \\n$\\\\mathcal{D}$\\n -classes of \\n$S$\\n , \\n$U_1$\\n and \\n$U_2$\\n . We then obtain a number of results concerning when inverse semigroup properties are preserved under the HNN extension construction. The properties considered are completely semisimpleness, having finite \\n$\\\\mathcal{R}$\\n -classes, residual finiteness, being \\n$E$\\n -unitary, and \\n$0$\\n - \\n$E$\\n -unitary. Examples are given, such as an HNN extension of a polycylic inverse monoid.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S001708952300023X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S001708952300023X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了由jajcayov引入的逆半群的下界HNN扩展的结构和保存性质。我们证明如果$S^* = [S;\;U_2 U_1; \;\phi]$是一个下界HNN扩展,则$S^*$的极大子群可以用Bass-Serre理论描述为由$S$, $U_1$和$U_2$的$\数学{D}$类定义的群的某些图的基群。然后,我们得到了在HNN可拓构造下逆半群性质保持的一些结果。所考虑的性质是完全半简单性,具有有限的$\mathcal{R}$ -类,剩余有限性,$E$ -酉和$0$ - $E$ -酉。给出了一个例子,如多环逆单阵的HNN扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the structure of lower bounded HNN extensions
Abstract This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if $S^* = [ S;\; U_1,U_2;\; \phi ]$ is a lower bounded HNN extension then the maximal subgroups of $S^*$ may be described using Bass-Serre theory, as the fundamental groups of certain graphs of groups defined from the $\mathcal{D}$ -classes of $S$ , $U_1$ and $U_2$ . We then obtain a number of results concerning when inverse semigroup properties are preserved under the HNN extension construction. The properties considered are completely semisimpleness, having finite $\mathcal{R}$ -classes, residual finiteness, being $E$ -unitary, and $0$ - $E$ -unitary. Examples are given, such as an HNN extension of a polycylic inverse monoid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信