Xiaoyan Liu, Xiao Xu, Mingxia Ji, Erick Amombo, Jinmin Fu
{"title":"百慕草生长、光合作用及基因表达对盐度和荫凉胁迫的响应","authors":"Xiaoyan Liu, Xiao Xu, Mingxia Ji, Erick Amombo, Jinmin Fu","doi":"10.21273/jashs05240-22","DOIUrl":null,"url":null,"abstract":"Soil salinization is an environmental problem globally. Bermudagrass (Cynodon dactylon) has long been used for soil restoration in saline-alkali land. Urbanization and the compound planting pattern combining trees, bushes, and grasses induced shading are becoming one of the most significant environmental constraints on the management of bermudagrass, which directly affects photosynthetic characteristics. Salinity and shade have become the most important environmental constraints on lawn development and implementation. Previous studies have shown that the plant physiological response under combined stress was different from that under single stress. The purpose of this research was to investigate the effects of salinity stress, shade stress, and the combined stress on bermudagrass. Shade nets were used to simulate shade stress to 85% shade. The NaCl concentration gradient for salinity stress was 1.0% for 7 days, 1.5% for 7 days, and 2.0% for 13 days, respectively. The combined stress combines the two approaches mentioned previously. The results showed that the salinity stress significantly inhibited the plant height, leaf relative water content, chlorophyll content, the chlorophyll a fluorescence induction (OJIP) curve and other photosynthetic parameters of bermudagrass while increasing electrolyte leakage when compared with control. Shade stress significantly enhanced the plant height, chlorophyll content, electrolyte leakage, the OJIP curve, and other photosynthetic parameters. Under the combined stress, the plant height and relative water content did not change significantly, but the photosynthetic parameters such as chlorophyll content and the OJIP curve increased. Furthermore, under the combined stress, the photosynthesis-related genes were regulated. Salinity stress inhibited the photosynthetic ability of bermudagrass more than shade stress, while the combined stress exhibited a considerably better photosynthetic ability. These findings provide information for the usage of bermudagrass in salinized shade conditions.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth, Photosynthesis, and Gene Expression of Bermudagrass in Response to Salinity and Shade Stress\",\"authors\":\"Xiaoyan Liu, Xiao Xu, Mingxia Ji, Erick Amombo, Jinmin Fu\",\"doi\":\"10.21273/jashs05240-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil salinization is an environmental problem globally. Bermudagrass (Cynodon dactylon) has long been used for soil restoration in saline-alkali land. Urbanization and the compound planting pattern combining trees, bushes, and grasses induced shading are becoming one of the most significant environmental constraints on the management of bermudagrass, which directly affects photosynthetic characteristics. Salinity and shade have become the most important environmental constraints on lawn development and implementation. Previous studies have shown that the plant physiological response under combined stress was different from that under single stress. The purpose of this research was to investigate the effects of salinity stress, shade stress, and the combined stress on bermudagrass. Shade nets were used to simulate shade stress to 85% shade. The NaCl concentration gradient for salinity stress was 1.0% for 7 days, 1.5% for 7 days, and 2.0% for 13 days, respectively. The combined stress combines the two approaches mentioned previously. The results showed that the salinity stress significantly inhibited the plant height, leaf relative water content, chlorophyll content, the chlorophyll a fluorescence induction (OJIP) curve and other photosynthetic parameters of bermudagrass while increasing electrolyte leakage when compared with control. Shade stress significantly enhanced the plant height, chlorophyll content, electrolyte leakage, the OJIP curve, and other photosynthetic parameters. Under the combined stress, the plant height and relative water content did not change significantly, but the photosynthetic parameters such as chlorophyll content and the OJIP curve increased. Furthermore, under the combined stress, the photosynthesis-related genes were regulated. Salinity stress inhibited the photosynthetic ability of bermudagrass more than shade stress, while the combined stress exhibited a considerably better photosynthetic ability. These findings provide information for the usage of bermudagrass in salinized shade conditions.\",\"PeriodicalId\":17226,\"journal\":{\"name\":\"Journal of the American Society for Horticultural Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Horticultural Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.21273/jashs05240-22\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Horticultural Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/jashs05240-22","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
Growth, Photosynthesis, and Gene Expression of Bermudagrass in Response to Salinity and Shade Stress
Soil salinization is an environmental problem globally. Bermudagrass (Cynodon dactylon) has long been used for soil restoration in saline-alkali land. Urbanization and the compound planting pattern combining trees, bushes, and grasses induced shading are becoming one of the most significant environmental constraints on the management of bermudagrass, which directly affects photosynthetic characteristics. Salinity and shade have become the most important environmental constraints on lawn development and implementation. Previous studies have shown that the plant physiological response under combined stress was different from that under single stress. The purpose of this research was to investigate the effects of salinity stress, shade stress, and the combined stress on bermudagrass. Shade nets were used to simulate shade stress to 85% shade. The NaCl concentration gradient for salinity stress was 1.0% for 7 days, 1.5% for 7 days, and 2.0% for 13 days, respectively. The combined stress combines the two approaches mentioned previously. The results showed that the salinity stress significantly inhibited the plant height, leaf relative water content, chlorophyll content, the chlorophyll a fluorescence induction (OJIP) curve and other photosynthetic parameters of bermudagrass while increasing electrolyte leakage when compared with control. Shade stress significantly enhanced the plant height, chlorophyll content, electrolyte leakage, the OJIP curve, and other photosynthetic parameters. Under the combined stress, the plant height and relative water content did not change significantly, but the photosynthetic parameters such as chlorophyll content and the OJIP curve increased. Furthermore, under the combined stress, the photosynthesis-related genes were regulated. Salinity stress inhibited the photosynthetic ability of bermudagrass more than shade stress, while the combined stress exhibited a considerably better photosynthetic ability. These findings provide information for the usage of bermudagrass in salinized shade conditions.
期刊介绍:
The Journal of the American Society for Horticultural Science publishes papers on the results of original research on horticultural plants and their products or directly related research areas. Its prime function is to communicate mission-oriented, fundamental research to other researchers.
The journal includes detailed reports of original research results on various aspects of horticultural science and directly related subjects such as:
- Biotechnology
- Developmental Physiology
- Environmental Stress Physiology
- Genetics and Breeding
- Photosynthesis, Sources-Sink Physiology
- Postharvest Biology
- Seed Physiology
- Postharvest Biology
- Seed Physiology
- Soil-Plant-Water Relationships
- Statistics