{"title":"基于概率缩放的极限学习机在MRI脑图像中的CBIR辅助分类","authors":"A. Geetha, N. Gomathi","doi":"10.1515/bams-2019-0060","DOIUrl":null,"url":null,"abstract":"Abstract An enormous number of magnetic resonance imaging (MRI) brain images were produced in hospitals and several MRI centers. To exploit the diagnosis in MRI brain image, “content-based image retrieval (CBIR)” system is accessed in the MRI brain image database. In this paper, a content-based MRI brain image retrieval system is presented, which is helpful in the medical field to seek a diagnosis in an MRI brain image that is similar to the example given. This paper consists of preprocessing, feature extraction, feature selection, similarity measure, and classification. In the preprocessing phase, the Wiener filter is used to remove the unwanted pixels from an MRI brain image. In the second phase, the features related to MRI brain image are extracted using characteristics of shape, margin, and density of the MRI. In the third stage, the features of MRI brain image were reduced using principal component analysis. CBIR classification is used in this method to gain effectual results. In the first stage, retrieval images are obtained using similarity measures using the similarity between the query image features and the derived trained image features. Finally, the classification stage is an extreme learning machine with probabilistic scaling used to classify the obtained retrieval output image and the query image. The result demonstrates that the proposed CBIR approach is robust and effectual compared with other latest work.","PeriodicalId":42620,"journal":{"name":"Bio-Algorithms and Med-Systems","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bams-2019-0060","citationCount":"1","resultStr":"{\"title\":\"CBIR aided classification using extreme learning machine with probabilistic scaling in MRI brain image\",\"authors\":\"A. Geetha, N. Gomathi\",\"doi\":\"10.1515/bams-2019-0060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An enormous number of magnetic resonance imaging (MRI) brain images were produced in hospitals and several MRI centers. To exploit the diagnosis in MRI brain image, “content-based image retrieval (CBIR)” system is accessed in the MRI brain image database. In this paper, a content-based MRI brain image retrieval system is presented, which is helpful in the medical field to seek a diagnosis in an MRI brain image that is similar to the example given. This paper consists of preprocessing, feature extraction, feature selection, similarity measure, and classification. In the preprocessing phase, the Wiener filter is used to remove the unwanted pixels from an MRI brain image. In the second phase, the features related to MRI brain image are extracted using characteristics of shape, margin, and density of the MRI. In the third stage, the features of MRI brain image were reduced using principal component analysis. CBIR classification is used in this method to gain effectual results. In the first stage, retrieval images are obtained using similarity measures using the similarity between the query image features and the derived trained image features. Finally, the classification stage is an extreme learning machine with probabilistic scaling used to classify the obtained retrieval output image and the query image. The result demonstrates that the proposed CBIR approach is robust and effectual compared with other latest work.\",\"PeriodicalId\":42620,\"journal\":{\"name\":\"Bio-Algorithms and Med-Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/bams-2019-0060\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-Algorithms and Med-Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bams-2019-0060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Algorithms and Med-Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bams-2019-0060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
CBIR aided classification using extreme learning machine with probabilistic scaling in MRI brain image
Abstract An enormous number of magnetic resonance imaging (MRI) brain images were produced in hospitals and several MRI centers. To exploit the diagnosis in MRI brain image, “content-based image retrieval (CBIR)” system is accessed in the MRI brain image database. In this paper, a content-based MRI brain image retrieval system is presented, which is helpful in the medical field to seek a diagnosis in an MRI brain image that is similar to the example given. This paper consists of preprocessing, feature extraction, feature selection, similarity measure, and classification. In the preprocessing phase, the Wiener filter is used to remove the unwanted pixels from an MRI brain image. In the second phase, the features related to MRI brain image are extracted using characteristics of shape, margin, and density of the MRI. In the third stage, the features of MRI brain image were reduced using principal component analysis. CBIR classification is used in this method to gain effectual results. In the first stage, retrieval images are obtained using similarity measures using the similarity between the query image features and the derived trained image features. Finally, the classification stage is an extreme learning machine with probabilistic scaling used to classify the obtained retrieval output image and the query image. The result demonstrates that the proposed CBIR approach is robust and effectual compared with other latest work.
期刊介绍:
The journal Bio-Algorithms and Med-Systems (BAMS), edited by the Jagiellonian University Medical College, provides a forum for the exchange of information in the interdisciplinary fields of computational methods applied in medicine, presenting new algorithms and databases that allows the progress in collaborations between medicine, informatics, physics, and biochemistry. Projects linking specialists representing these disciplines are welcome to be published in this Journal. Articles in BAMS are published in English. Topics Bioinformatics Systems biology Telemedicine E-Learning in Medicine Patient''s electronic record Image processing Medical databases.