{"title":"塑料回收用双核催化剂解聚聚酯","authors":"Shengbo Zhang, Qikun Hu, Yu-Xiao Zhang, Haoyue Guo, Yanfen Wu, Mingze Sun, Xingsong Zhu, Jiangang Zhang, Shuyan Gong, Ping Liu, Zhiqiang Niu","doi":"10.1038/s41893-023-01118-4","DOIUrl":null,"url":null,"abstract":"Plastics play an essential role in modern society; however, the relentless growth of their production is threatening both human health and ecosystems. As a result, there are intensive efforts in developing recycling technologies to repurpose waste plastics into the building blocks for valuable materials. Here we show a binuclear complex that can catalyse the degradation of poly(ethylene terephthalate) (PET)—the most widely used polyester globally—and a wide spectrum of other plastics including polylactic acid, polybutylene adipate terephthalate, polycaprolactone, polyurethane and Nylon 66. Inspired by hydrolases, the group of enzymes that catalyse bond cleavages with water, the present catalyst design features biomimetic Zn‒Zn sites that activate the plastic, stabilize the key intermediate and enable intramolecular hydrolysis. This synthetic catalyst delivers an activity of 36 mgPET d−1 gcatal−1 toward PET depolymerization at pH 8 and 40 °C and an activity of 577 gPET d−1 gcatal−1 at pH 13 and 90 °C for scalable PET recycling. We further demonstrate a closed-loop production of bottle-grade PET. This work presents a practical and viable solution for the sustainable management of plastics waste. Plastic pollution forms a major global challenge to the ecosystem. Here the authors show a binuclear catalyst that could degrade various polyesters in an effective and scalable way, providing a promising technological solution to the challenge.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"6 8","pages":"965-973"},"PeriodicalIF":25.7000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Depolymerization of polyesters by a binuclear catalyst for plastic recycling\",\"authors\":\"Shengbo Zhang, Qikun Hu, Yu-Xiao Zhang, Haoyue Guo, Yanfen Wu, Mingze Sun, Xingsong Zhu, Jiangang Zhang, Shuyan Gong, Ping Liu, Zhiqiang Niu\",\"doi\":\"10.1038/s41893-023-01118-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plastics play an essential role in modern society; however, the relentless growth of their production is threatening both human health and ecosystems. As a result, there are intensive efforts in developing recycling technologies to repurpose waste plastics into the building blocks for valuable materials. Here we show a binuclear complex that can catalyse the degradation of poly(ethylene terephthalate) (PET)—the most widely used polyester globally—and a wide spectrum of other plastics including polylactic acid, polybutylene adipate terephthalate, polycaprolactone, polyurethane and Nylon 66. Inspired by hydrolases, the group of enzymes that catalyse bond cleavages with water, the present catalyst design features biomimetic Zn‒Zn sites that activate the plastic, stabilize the key intermediate and enable intramolecular hydrolysis. This synthetic catalyst delivers an activity of 36 mgPET d−1 gcatal−1 toward PET depolymerization at pH 8 and 40 °C and an activity of 577 gPET d−1 gcatal−1 at pH 13 and 90 °C for scalable PET recycling. We further demonstrate a closed-loop production of bottle-grade PET. This work presents a practical and viable solution for the sustainable management of plastics waste. Plastic pollution forms a major global challenge to the ecosystem. Here the authors show a binuclear catalyst that could degrade various polyesters in an effective and scalable way, providing a promising technological solution to the challenge.\",\"PeriodicalId\":19056,\"journal\":{\"name\":\"Nature Sustainability\",\"volume\":\"6 8\",\"pages\":\"965-973\"},\"PeriodicalIF\":25.7000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s41893-023-01118-4\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-023-01118-4","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Depolymerization of polyesters by a binuclear catalyst for plastic recycling
Plastics play an essential role in modern society; however, the relentless growth of their production is threatening both human health and ecosystems. As a result, there are intensive efforts in developing recycling technologies to repurpose waste plastics into the building blocks for valuable materials. Here we show a binuclear complex that can catalyse the degradation of poly(ethylene terephthalate) (PET)—the most widely used polyester globally—and a wide spectrum of other plastics including polylactic acid, polybutylene adipate terephthalate, polycaprolactone, polyurethane and Nylon 66. Inspired by hydrolases, the group of enzymes that catalyse bond cleavages with water, the present catalyst design features biomimetic Zn‒Zn sites that activate the plastic, stabilize the key intermediate and enable intramolecular hydrolysis. This synthetic catalyst delivers an activity of 36 mgPET d−1 gcatal−1 toward PET depolymerization at pH 8 and 40 °C and an activity of 577 gPET d−1 gcatal−1 at pH 13 and 90 °C for scalable PET recycling. We further demonstrate a closed-loop production of bottle-grade PET. This work presents a practical and viable solution for the sustainable management of plastics waste. Plastic pollution forms a major global challenge to the ecosystem. Here the authors show a binuclear catalyst that could degrade various polyesters in an effective and scalable way, providing a promising technological solution to the challenge.
期刊介绍:
Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions.
Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.