利用混合特征选择算法改进手写数字识别

IF 12.3 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Fung Yuen Chin, K. Lem, Khye Mun Wong
{"title":"利用混合特征选择算法改进手写数字识别","authors":"Fung Yuen Chin, K. Lem, Khye Mun Wong","doi":"10.1108/aci-02-2022-0054","DOIUrl":null,"url":null,"abstract":"PurposeThe amount of features in handwritten digit data is often very large due to the different aspects in personal handwriting, leading to high-dimensional data. Therefore, the employment of a feature selection algorithm becomes crucial for successful classification modeling, because the inclusion of irrelevant or redundant features can mislead the modeling algorithms, resulting in overfitting and decrease in efficiency.Design/methodology/approachThe minimum redundancy and maximum relevance (mRMR) and the recursive feature elimination (RFE) are two frequently used feature selection algorithms. While mRMR is capable of identifying a subset of features that are highly relevant to the targeted classification variable, mRMR still carries the weakness of capturing redundant features along with the algorithm. On the other hand, RFE is flawed by the fact that those features selected by RFE are not ranked by importance, albeit RFE can effectively eliminate the less important features and exclude redundant features.FindingsThe hybrid method was exemplified in a binary classification between digits “4” and “9” and between digits “6” and “8” from a multiple features dataset. The result showed that the hybrid mRMR +  support vector machine recursive feature elimination (SVMRFE) is better than both the sole support vector machine (SVM) and mRMR.Originality/valueIn view of the respective strength and deficiency mRMR and RFE, this study combined both these methods and used an SVM as the underlying classifier anticipating the mRMR to make an excellent complement to the SVMRFE.","PeriodicalId":37348,"journal":{"name":"Applied Computing and Informatics","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving handwritten digit recognition using hybrid feature selection algorithm\",\"authors\":\"Fung Yuen Chin, K. Lem, Khye Mun Wong\",\"doi\":\"10.1108/aci-02-2022-0054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe amount of features in handwritten digit data is often very large due to the different aspects in personal handwriting, leading to high-dimensional data. Therefore, the employment of a feature selection algorithm becomes crucial for successful classification modeling, because the inclusion of irrelevant or redundant features can mislead the modeling algorithms, resulting in overfitting and decrease in efficiency.Design/methodology/approachThe minimum redundancy and maximum relevance (mRMR) and the recursive feature elimination (RFE) are two frequently used feature selection algorithms. While mRMR is capable of identifying a subset of features that are highly relevant to the targeted classification variable, mRMR still carries the weakness of capturing redundant features along with the algorithm. On the other hand, RFE is flawed by the fact that those features selected by RFE are not ranked by importance, albeit RFE can effectively eliminate the less important features and exclude redundant features.FindingsThe hybrid method was exemplified in a binary classification between digits “4” and “9” and between digits “6” and “8” from a multiple features dataset. The result showed that the hybrid mRMR +  support vector machine recursive feature elimination (SVMRFE) is better than both the sole support vector machine (SVM) and mRMR.Originality/valueIn view of the respective strength and deficiency mRMR and RFE, this study combined both these methods and used an SVM as the underlying classifier anticipating the mRMR to make an excellent complement to the SVMRFE.\",\"PeriodicalId\":37348,\"journal\":{\"name\":\"Applied Computing and Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/aci-02-2022-0054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/aci-02-2022-0054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的由于个人笔迹的不同方面,手写数字数据的特征量往往非常大,导致数据高维。因此,特征选择算法的使用对于成功的分类建模至关重要,因为不相关或冗余特征的包含可能会误导建模算法,导致过拟合和效率降低。设计/方法/方法最小冗余和最大相关性(mRMR)和递归特征消除(RFE)是两种常用的特征选择算法。虽然mRMR能够识别与目标分类变量高度相关的特征子集,但mRMR仍然存在捕获冗余特征的缺点。另一方面,尽管RFE可以有效地剔除不重要的特征和排除冗余的特征,但RFE所选择的特征并没有按重要性排序,这是RFE的缺陷。结果以多特征数据集中数字“4”和数字“9”以及数字“6”和数字“8”之间的二元分类为例说明了混合方法。结果表明,混合mRMR +支持向量机递归特征消除(SVMRFE)优于单一支持向量机(SVM)和mRMR。鉴于mRMR和RFE各自的优势和不足,本研究将这两种方法结合起来,并使用支持向量机作为预测mRMR的底层分类器,以对SVMRFE进行出色的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving handwritten digit recognition using hybrid feature selection algorithm
PurposeThe amount of features in handwritten digit data is often very large due to the different aspects in personal handwriting, leading to high-dimensional data. Therefore, the employment of a feature selection algorithm becomes crucial for successful classification modeling, because the inclusion of irrelevant or redundant features can mislead the modeling algorithms, resulting in overfitting and decrease in efficiency.Design/methodology/approachThe minimum redundancy and maximum relevance (mRMR) and the recursive feature elimination (RFE) are two frequently used feature selection algorithms. While mRMR is capable of identifying a subset of features that are highly relevant to the targeted classification variable, mRMR still carries the weakness of capturing redundant features along with the algorithm. On the other hand, RFE is flawed by the fact that those features selected by RFE are not ranked by importance, albeit RFE can effectively eliminate the less important features and exclude redundant features.FindingsThe hybrid method was exemplified in a binary classification between digits “4” and “9” and between digits “6” and “8” from a multiple features dataset. The result showed that the hybrid mRMR +  support vector machine recursive feature elimination (SVMRFE) is better than both the sole support vector machine (SVM) and mRMR.Originality/valueIn view of the respective strength and deficiency mRMR and RFE, this study combined both these methods and used an SVM as the underlying classifier anticipating the mRMR to make an excellent complement to the SVMRFE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Informatics
Applied Computing and Informatics Computer Science-Information Systems
CiteScore
12.20
自引率
0.00%
发文量
0
审稿时长
39 weeks
期刊介绍: Applied Computing and Informatics aims to be timely in disseminating leading-edge knowledge to researchers, practitioners and academics whose interest is in the latest developments in applied computing and information systems concepts, strategies, practices, tools and technologies. In particular, the journal encourages research studies that have significant contributions to make to the continuous development and improvement of IT practices in the Kingdom of Saudi Arabia and other countries. By doing so, the journal attempts to bridge the gap between the academic and industrial community, and therefore, welcomes theoretically grounded, methodologically sound research studies that address various IT-related problems and innovations of an applied nature. The journal will serve as a forum for practitioners, researchers, managers and IT policy makers to share their knowledge and experience in the design, development, implementation, management and evaluation of various IT applications. Contributions may deal with, but are not limited to: • Internet and E-Commerce Architecture, Infrastructure, Models, Deployment Strategies and Methodologies. • E-Business and E-Government Adoption. • Mobile Commerce and their Applications. • Applied Telecommunication Networks. • Software Engineering Approaches, Methodologies, Techniques, and Tools. • Applied Data Mining and Warehousing. • Information Strategic Planning and Recourse Management. • Applied Wireless Computing. • Enterprise Resource Planning Systems. • IT Education. • Societal, Cultural, and Ethical Issues of IT. • Policy, Legal and Global Issues of IT. • Enterprise Database Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信