PSL2R $ {\ mathm {PSL}_2\mathbb{R}} $中纯双曲表示的几何化

IF 0.5 4区 数学 Q3 MATHEMATICS
Gianluca Faraco
{"title":"PSL2R $ {\\ mathm {PSL}_2\\mathbb{R}} $中纯双曲表示的几何化","authors":"Gianluca Faraco","doi":"10.1515/advgeom-2020-0025","DOIUrl":null,"url":null,"abstract":"Abstract Let S be a surface of genus g at least 2. A representation ρ:π1S→PSL2R $ \\rho:\\pi_1 S\\to{\\mathrm{PSL}_2\\mathbb{R}} $ is said to be purely hyperbolic if its image consists only of hyperbolic elements along with the identity. We may wonder under which conditions such representations arise as the holonomy of a branched hyperbolic structure on S. In this work we characterise them completely, giving necessary and sufficient conditions.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/advgeom-2020-0025","citationCount":"0","resultStr":"{\"title\":\"Geometrisation of purely hyperbolic representations in PSL2R $ {\\\\mathrm{PSL}_2\\\\mathbb{R}} $\",\"authors\":\"Gianluca Faraco\",\"doi\":\"10.1515/advgeom-2020-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let S be a surface of genus g at least 2. A representation ρ:π1S→PSL2R $ \\\\rho:\\\\pi_1 S\\\\to{\\\\mathrm{PSL}_2\\\\mathbb{R}} $ is said to be purely hyperbolic if its image consists only of hyperbolic elements along with the identity. We may wonder under which conditions such representations arise as the holonomy of a branched hyperbolic structure on S. In this work we characterise them completely, giving necessary and sufficient conditions.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/advgeom-2020-0025\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2020-0025\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2020-0025","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设S是g属至少为2的曲面。如果一个表示ρ:π1S→PSL2R $ \rho:\pi_1 S\to{\mathrm{PSL}_2\mathbb{R}} $仅由双曲元和单位元组成,则称其为纯双曲的。我们可能想知道,在什么条件下,s上的分支双曲结构的完整性会出现这样的表征。在这项工作中,我们完全描述了它们,给出了必要和充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometrisation of purely hyperbolic representations in PSL2R $ {\mathrm{PSL}_2\mathbb{R}} $
Abstract Let S be a surface of genus g at least 2. A representation ρ:π1S→PSL2R $ \rho:\pi_1 S\to{\mathrm{PSL}_2\mathbb{R}} $ is said to be purely hyperbolic if its image consists only of hyperbolic elements along with the identity. We may wonder under which conditions such representations arise as the holonomy of a branched hyperbolic structure on S. In this work we characterise them completely, giving necessary and sufficient conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信