Alexandra B. Nagurney, Mark J. Caddick, Chris E. White
{"title":"加拿大新斯科舍省Meguma地块西南部石榴石结晶机制及局部多变质作用","authors":"Alexandra B. Nagurney, Mark J. Caddick, Chris E. White","doi":"10.1111/jmg.12678","DOIUrl":null,"url":null,"abstract":"<p>We present data on the pressure and temperature (<i>P–T</i>) conditions experienced by metamorphic rocks of the Meguma Terrane, Nova Scotia, Canada, also utilizing three-dimensional microstructural data on one sample to better constrain the mechanisms that controlled garnet crystallization. Inverse and forward thermodynamic modelling place peak <i>P–T</i> conditions in the southwestern Meguma Terrane at ~650°C and 4.5 kbar. Interpretation of these results with petrographic observations and previous <i>P–T</i> constraints across the terrane suggests that amphibolite facies metamorphism occurred during the Devonian Neoacadian orogeny (406–388 Ma). Integration of quantitative 3D textural data with an estimated metamorphic heating rate of <5°C/Myr is consistent with amphibolite facies metamorphism resulting from tectonic loading during the Neoacadian orogeny, though the exact nature of the orogeny is still not well understood. Further, the intrusion of granitic plutons into the Meguma metasediments at 373 Ma likely locally drove metamorphic recrystallization (polymetamorphism). The 3D size, shape, and location of garnet crystals in one sample reveal that the rate-limiting step for garnet crystallization was likely the diffusion of aluminium through the intergranular matrix at length scales less than the mean nearest neighbour distance between garnet crystals. Nucleation was aided by epitaxial overgrowth onto a muscovite substrate, though it appears there may have been a decoupling between minerals providing a substrate and those providing nutrients during garnet growth.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Garnet crystallization mechanisms and localized polymetamorphism in the southwestern Meguma Terrane, Nova Scotia, Canada\",\"authors\":\"Alexandra B. Nagurney, Mark J. Caddick, Chris E. White\",\"doi\":\"10.1111/jmg.12678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present data on the pressure and temperature (<i>P–T</i>) conditions experienced by metamorphic rocks of the Meguma Terrane, Nova Scotia, Canada, also utilizing three-dimensional microstructural data on one sample to better constrain the mechanisms that controlled garnet crystallization. Inverse and forward thermodynamic modelling place peak <i>P–T</i> conditions in the southwestern Meguma Terrane at ~650°C and 4.5 kbar. Interpretation of these results with petrographic observations and previous <i>P–T</i> constraints across the terrane suggests that amphibolite facies metamorphism occurred during the Devonian Neoacadian orogeny (406–388 Ma). Integration of quantitative 3D textural data with an estimated metamorphic heating rate of <5°C/Myr is consistent with amphibolite facies metamorphism resulting from tectonic loading during the Neoacadian orogeny, though the exact nature of the orogeny is still not well understood. Further, the intrusion of granitic plutons into the Meguma metasediments at 373 Ma likely locally drove metamorphic recrystallization (polymetamorphism). The 3D size, shape, and location of garnet crystals in one sample reveal that the rate-limiting step for garnet crystallization was likely the diffusion of aluminium through the intergranular matrix at length scales less than the mean nearest neighbour distance between garnet crystals. Nucleation was aided by epitaxial overgrowth onto a muscovite substrate, though it appears there may have been a decoupling between minerals providing a substrate and those providing nutrients during garnet growth.</p>\",\"PeriodicalId\":16472,\"journal\":{\"name\":\"Journal of Metamorphic Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Metamorphic Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12678\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metamorphic Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12678","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Garnet crystallization mechanisms and localized polymetamorphism in the southwestern Meguma Terrane, Nova Scotia, Canada
We present data on the pressure and temperature (P–T) conditions experienced by metamorphic rocks of the Meguma Terrane, Nova Scotia, Canada, also utilizing three-dimensional microstructural data on one sample to better constrain the mechanisms that controlled garnet crystallization. Inverse and forward thermodynamic modelling place peak P–T conditions in the southwestern Meguma Terrane at ~650°C and 4.5 kbar. Interpretation of these results with petrographic observations and previous P–T constraints across the terrane suggests that amphibolite facies metamorphism occurred during the Devonian Neoacadian orogeny (406–388 Ma). Integration of quantitative 3D textural data with an estimated metamorphic heating rate of <5°C/Myr is consistent with amphibolite facies metamorphism resulting from tectonic loading during the Neoacadian orogeny, though the exact nature of the orogeny is still not well understood. Further, the intrusion of granitic plutons into the Meguma metasediments at 373 Ma likely locally drove metamorphic recrystallization (polymetamorphism). The 3D size, shape, and location of garnet crystals in one sample reveal that the rate-limiting step for garnet crystallization was likely the diffusion of aluminium through the intergranular matrix at length scales less than the mean nearest neighbour distance between garnet crystals. Nucleation was aided by epitaxial overgrowth onto a muscovite substrate, though it appears there may have been a decoupling between minerals providing a substrate and those providing nutrients during garnet growth.
期刊介绍:
The journal, which is published nine times a year, encompasses the entire range of metamorphic studies, from the scale of the individual crystal to that of lithospheric plates, including regional studies of metamorphic terranes, modelling of metamorphic processes, microstructural and deformation studies in relation to metamorphism, geochronology and geochemistry in metamorphic systems, the experimental study of metamorphic reactions, properties of metamorphic minerals and rocks and the economic aspects of metamorphic terranes.