Yingyi Zhang , Laihao Yu , Kunkun Cui , Hong Wang , Tao Fu
{"title":"炼钢炉渣碳捕获和储存技术:最新进展和未来挑战","authors":"Yingyi Zhang , Laihao Yu , Kunkun Cui , Hong Wang , Tao Fu","doi":"10.1016/j.cej.2022.140552","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of economy and industrialization, the consumption of natural resources has risen sharply. A large number of greenhouse gases and industrial solid waste emissions have exacerbated global warming, resulting in a series of environmental degradation problems. Using natural minerals or industrial solid waste for carbon dioxide capture and utilization (CCU) is considered to be a feasible and promising technology. From the perspective of circular economy, steel-making slag as carbon dioxide storage material has great economic and environmental value. This paper summarized the main carbonation pathways and carbon capture mechanisms of industrial solid wastes. The carbonation processes of the most representative solid waste of steel-making slags were compared, the effects of different carbonation pathways on the carbonation capacity of steel-making slags were evaluated, and the characteristics of carbonation products obtained from different carbonation pathways were also compared. In addition, the industrial application status of carbon dioxide carbonation technology of steel-making slags was analyzed, and the main challenges it faces were summarized and prospected. We hope that this review can attract extensive attention of scholars and promote the further development of carbon dioxide storage technology by mineralization of steel-making slag.</p></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"455 ","pages":"Article 140552"},"PeriodicalIF":13.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Carbon capture and storage technology by steel-making slags: Recent progress and future challenges\",\"authors\":\"Yingyi Zhang , Laihao Yu , Kunkun Cui , Hong Wang , Tao Fu\",\"doi\":\"10.1016/j.cej.2022.140552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the rapid development of economy and industrialization, the consumption of natural resources has risen sharply. A large number of greenhouse gases and industrial solid waste emissions have exacerbated global warming, resulting in a series of environmental degradation problems. Using natural minerals or industrial solid waste for carbon dioxide capture and utilization (CCU) is considered to be a feasible and promising technology. From the perspective of circular economy, steel-making slag as carbon dioxide storage material has great economic and environmental value. This paper summarized the main carbonation pathways and carbon capture mechanisms of industrial solid wastes. The carbonation processes of the most representative solid waste of steel-making slags were compared, the effects of different carbonation pathways on the carbonation capacity of steel-making slags were evaluated, and the characteristics of carbonation products obtained from different carbonation pathways were also compared. In addition, the industrial application status of carbon dioxide carbonation technology of steel-making slags was analyzed, and the main challenges it faces were summarized and prospected. We hope that this review can attract extensive attention of scholars and promote the further development of carbon dioxide storage technology by mineralization of steel-making slag.</p></div>\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"455 \",\"pages\":\"Article 140552\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385894722060326\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894722060326","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Carbon capture and storage technology by steel-making slags: Recent progress and future challenges
With the rapid development of economy and industrialization, the consumption of natural resources has risen sharply. A large number of greenhouse gases and industrial solid waste emissions have exacerbated global warming, resulting in a series of environmental degradation problems. Using natural minerals or industrial solid waste for carbon dioxide capture and utilization (CCU) is considered to be a feasible and promising technology. From the perspective of circular economy, steel-making slag as carbon dioxide storage material has great economic and environmental value. This paper summarized the main carbonation pathways and carbon capture mechanisms of industrial solid wastes. The carbonation processes of the most representative solid waste of steel-making slags were compared, the effects of different carbonation pathways on the carbonation capacity of steel-making slags were evaluated, and the characteristics of carbonation products obtained from different carbonation pathways were also compared. In addition, the industrial application status of carbon dioxide carbonation technology of steel-making slags was analyzed, and the main challenges it faces were summarized and prospected. We hope that this review can attract extensive attention of scholars and promote the further development of carbon dioxide storage technology by mineralization of steel-making slag.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.