Brittney A. Beidelman, Xiaotian Zhang, Ellen M. Matson and Kathryn E. Knowles*,
{"title":"溶剂热条件下羧酸配体的酸度对VO2(A)和VO2(B)纳米晶体形成的影响","authors":"Brittney A. Beidelman, Xiaotian Zhang, Ellen M. Matson and Kathryn E. Knowles*, ","doi":"10.1021/acsnanoscienceau.3c00014","DOIUrl":null,"url":null,"abstract":"<p >Vanadium dioxide (VO<sub>2</sub>) can adopt many different crystal structures at ambient temperature and pressure, each with different, and often desirable, electronic, optical, and chemical properties. Understanding how to control which crystal phase forms under various reaction conditions is therefore crucial to developing VO<sub>2</sub> for various applications. This paper describes the impact of ligand acidity on the formation of VO<sub>2</sub> nanocrystals from the solvothermal reaction of vanadyl acetylacetonate (VO(acac)<sub>2</sub>) with stoichiometric amounts of water. Carboxylic acids examined herein favor the formation of the monoclinic VO<sub>2</sub>(B) phase over the tetragonal VO<sub>2</sub>(A) phase as the concentration of water in the reaction increases. However, the threshold concentration of water required to obtain phase-pure VO<sub>2</sub>(B) nanocrystals increases as the p<i>K</i><sub>a</sub> of the carboxylic acid decreases. We also observe that increasing the concentration of VO(acac)<sub>2</sub> or the concentration of acid while keeping the concentration of water constant favors the formation of VO<sub>2</sub>(A). Single-crystal electron diffraction measurements enable the identification of vanadyl carboxylate species formed in reactions that do not contain enough water to promote the formation of VO<sub>2</sub>. Increasing the length of the carbon chain on aliphatic carboxylic acids did not impact the phase of VO<sub>2</sub> nanocrystals obtained but did result in a change from nanorod to nanoplatelet morphology. These results suggest that inhibiting the rate of hydrolysis of the VO(acac)<sub>2</sub> precursor either by decreasing the ratio of water to VO(acac)<sub>2</sub> or by increasing the fraction of water molecules that are protonated favors the formation of VO<sub>2</sub>(A) over VO<sub>2</sub>(B).</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 5","pages":"381–388"},"PeriodicalIF":4.8000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00014","citationCount":"0","resultStr":"{\"title\":\"Acidity of Carboxylic Acid Ligands Influences the Formation of VO2(A) and VO2(B) Nanocrystals under Solvothermal Conditions\",\"authors\":\"Brittney A. Beidelman, Xiaotian Zhang, Ellen M. Matson and Kathryn E. Knowles*, \",\"doi\":\"10.1021/acsnanoscienceau.3c00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Vanadium dioxide (VO<sub>2</sub>) can adopt many different crystal structures at ambient temperature and pressure, each with different, and often desirable, electronic, optical, and chemical properties. Understanding how to control which crystal phase forms under various reaction conditions is therefore crucial to developing VO<sub>2</sub> for various applications. This paper describes the impact of ligand acidity on the formation of VO<sub>2</sub> nanocrystals from the solvothermal reaction of vanadyl acetylacetonate (VO(acac)<sub>2</sub>) with stoichiometric amounts of water. Carboxylic acids examined herein favor the formation of the monoclinic VO<sub>2</sub>(B) phase over the tetragonal VO<sub>2</sub>(A) phase as the concentration of water in the reaction increases. However, the threshold concentration of water required to obtain phase-pure VO<sub>2</sub>(B) nanocrystals increases as the p<i>K</i><sub>a</sub> of the carboxylic acid decreases. We also observe that increasing the concentration of VO(acac)<sub>2</sub> or the concentration of acid while keeping the concentration of water constant favors the formation of VO<sub>2</sub>(A). Single-crystal electron diffraction measurements enable the identification of vanadyl carboxylate species formed in reactions that do not contain enough water to promote the formation of VO<sub>2</sub>. Increasing the length of the carbon chain on aliphatic carboxylic acids did not impact the phase of VO<sub>2</sub> nanocrystals obtained but did result in a change from nanorod to nanoplatelet morphology. These results suggest that inhibiting the rate of hydrolysis of the VO(acac)<sub>2</sub> precursor either by decreasing the ratio of water to VO(acac)<sub>2</sub> or by increasing the fraction of water molecules that are protonated favors the formation of VO<sub>2</sub>(A) over VO<sub>2</sub>(B).</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":\"3 5\",\"pages\":\"381–388\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00014\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.3c00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.3c00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Acidity of Carboxylic Acid Ligands Influences the Formation of VO2(A) and VO2(B) Nanocrystals under Solvothermal Conditions
Vanadium dioxide (VO2) can adopt many different crystal structures at ambient temperature and pressure, each with different, and often desirable, electronic, optical, and chemical properties. Understanding how to control which crystal phase forms under various reaction conditions is therefore crucial to developing VO2 for various applications. This paper describes the impact of ligand acidity on the formation of VO2 nanocrystals from the solvothermal reaction of vanadyl acetylacetonate (VO(acac)2) with stoichiometric amounts of water. Carboxylic acids examined herein favor the formation of the monoclinic VO2(B) phase over the tetragonal VO2(A) phase as the concentration of water in the reaction increases. However, the threshold concentration of water required to obtain phase-pure VO2(B) nanocrystals increases as the pKa of the carboxylic acid decreases. We also observe that increasing the concentration of VO(acac)2 or the concentration of acid while keeping the concentration of water constant favors the formation of VO2(A). Single-crystal electron diffraction measurements enable the identification of vanadyl carboxylate species formed in reactions that do not contain enough water to promote the formation of VO2. Increasing the length of the carbon chain on aliphatic carboxylic acids did not impact the phase of VO2 nanocrystals obtained but did result in a change from nanorod to nanoplatelet morphology. These results suggest that inhibiting the rate of hydrolysis of the VO(acac)2 precursor either by decreasing the ratio of water to VO(acac)2 or by increasing the fraction of water molecules that are protonated favors the formation of VO2(A) over VO2(B).
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.