半直线上定义的加权Sobolev空间中的密度结果和迹算子,配备了幂权

IF 0.9 3区 数学 Q2 MATHEMATICS
Radosław Kaczmarek , Agnieszka Kałamajska
{"title":"半直线上定义的加权Sobolev空间中的密度结果和迹算子,配备了幂权","authors":"Radosław Kaczmarek ,&nbsp;Agnieszka Kałamajska","doi":"10.1016/j.jat.2023.105896","DOIUrl":null,"url":null,"abstract":"<div><p>We study properties of <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> — the completion of <span><math><mrow><msubsup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span><span> in the power-weighted Sobolev spaces </span><span><math><mrow><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>β</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. Among other results, we obtain the analytic characterization of <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>β</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. Our analysis is based on the precise study of the two trace operators: <span><math><mrow><mi>T</mi><msup><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msup><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≔</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>T</mi><msup><mrow><mi>r</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≔</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span><span>, which leads to the analysis of the asymptotic behavior of functions from </span><span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span><span><span> near zero or infinity. The obtained statements can contribute to the proper formulation of Boundary Value Problems<span> in ODEs, or </span></span>PDEs<span><span> with the radial symmetries. We can also apply our results to some questions in the complex </span>interpolation theory, raised by Cwikel and Einav (2019), which we discuss within the particular case of Sobolev spaces </span></span><span><math><mrow><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Density results and trace operator in weighted Sobolev spaces defined on the half-line, equipped with power weights\",\"authors\":\"Radosław Kaczmarek ,&nbsp;Agnieszka Kałamajska\",\"doi\":\"10.1016/j.jat.2023.105896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study properties of <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> — the completion of <span><math><mrow><msubsup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span><span> in the power-weighted Sobolev spaces </span><span><math><mrow><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>β</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. Among other results, we obtain the analytic characterization of <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>β</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. Our analysis is based on the precise study of the two trace operators: <span><math><mrow><mi>T</mi><msup><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msup><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≔</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>T</mi><msup><mrow><mi>r</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≔</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span><span>, which leads to the analysis of the asymptotic behavior of functions from </span><span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span><span><span> near zero or infinity. The obtained statements can contribute to the proper formulation of Boundary Value Problems<span> in ODEs, or </span></span>PDEs<span><span> with the radial symmetries. We can also apply our results to some questions in the complex </span>interpolation theory, raised by Cwikel and Einav (2019), which we discuss within the particular case of Sobolev spaces </span></span><span><math><mrow><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904523000345\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904523000345","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

研究了幂加权Sobolev空间W1,p(R+,tβ)中C0∞(R+)的完备性,其中β∈R。在其他结果中,我们得到了所有β∈R的W01,p(R+,tβ)的解析特征。我们的分析是基于对两个迹算子的精确研究:Tr0(u)≔limt→0u(t)和Tr∞(u)≔limt→∞u(t),这导致了对W01,p(R+,tβ)函数在零或无穷大附近的渐近行为的分析。所获得的陈述有助于正确地公式化常微分方程或具有径向对称性的偏微分方程中的边值问题。我们还可以将我们的结果应用于Cwikel和Einav(2019)提出的复插值理论中的一些问题,我们在Sobolev空间W1,p(R+,tβ)的特定情况下讨论了这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density results and trace operator in weighted Sobolev spaces defined on the half-line, equipped with power weights

We study properties of W01,p(R+,tβ) — the completion of C0(R+) in the power-weighted Sobolev spaces W1,p(R+,tβ), where βR. Among other results, we obtain the analytic characterization of W01,p(R+,tβ) for all βR. Our analysis is based on the precise study of the two trace operators: Tr0(u)limt0u(t) and Tr(u)limtu(t), which leads to the analysis of the asymptotic behavior of functions from W01,p(R+,tβ) near zero or infinity. The obtained statements can contribute to the proper formulation of Boundary Value Problems in ODEs, or PDEs with the radial symmetries. We can also apply our results to some questions in the complex interpolation theory, raised by Cwikel and Einav (2019), which we discuss within the particular case of Sobolev spaces W1,p(R+,tβ).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信