{"title":"半直线上定义的加权Sobolev空间中的密度结果和迹算子,配备了幂权","authors":"Radosław Kaczmarek , Agnieszka Kałamajska","doi":"10.1016/j.jat.2023.105896","DOIUrl":null,"url":null,"abstract":"<div><p>We study properties of <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> — the completion of <span><math><mrow><msubsup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span><span> in the power-weighted Sobolev spaces </span><span><math><mrow><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>β</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. Among other results, we obtain the analytic characterization of <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>β</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. Our analysis is based on the precise study of the two trace operators: <span><math><mrow><mi>T</mi><msup><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msup><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≔</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>T</mi><msup><mrow><mi>r</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≔</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span><span>, which leads to the analysis of the asymptotic behavior of functions from </span><span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span><span><span> near zero or infinity. The obtained statements can contribute to the proper formulation of Boundary Value Problems<span> in ODEs, or </span></span>PDEs<span><span> with the radial symmetries. We can also apply our results to some questions in the complex </span>interpolation theory, raised by Cwikel and Einav (2019), which we discuss within the particular case of Sobolev spaces </span></span><span><math><mrow><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Density results and trace operator in weighted Sobolev spaces defined on the half-line, equipped with power weights\",\"authors\":\"Radosław Kaczmarek , Agnieszka Kałamajska\",\"doi\":\"10.1016/j.jat.2023.105896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study properties of <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> — the completion of <span><math><mrow><msubsup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span><span> in the power-weighted Sobolev spaces </span><span><math><mrow><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>β</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. Among other results, we obtain the analytic characterization of <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>β</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. Our analysis is based on the precise study of the two trace operators: <span><math><mrow><mi>T</mi><msup><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msup><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≔</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>T</mi><msup><mrow><mi>r</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≔</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span><span>, which leads to the analysis of the asymptotic behavior of functions from </span><span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span><span><span> near zero or infinity. The obtained statements can contribute to the proper formulation of Boundary Value Problems<span> in ODEs, or </span></span>PDEs<span><span> with the radial symmetries. We can also apply our results to some questions in the complex </span>interpolation theory, raised by Cwikel and Einav (2019), which we discuss within the particular case of Sobolev spaces </span></span><span><math><mrow><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904523000345\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904523000345","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Density results and trace operator in weighted Sobolev spaces defined on the half-line, equipped with power weights
We study properties of — the completion of in the power-weighted Sobolev spaces , where . Among other results, we obtain the analytic characterization of for all . Our analysis is based on the precise study of the two trace operators: and , which leads to the analysis of the asymptotic behavior of functions from near zero or infinity. The obtained statements can contribute to the proper formulation of Boundary Value Problems in ODEs, or PDEs with the radial symmetries. We can also apply our results to some questions in the complex interpolation theory, raised by Cwikel and Einav (2019), which we discuss within the particular case of Sobolev spaces .
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.