{"title":"关于粒度多胞空间与多胞猜测函数的对应关系","authors":"Xun Ge","doi":"10.1016/j.jmp.2022.102743","DOIUrl":null,"url":null,"abstract":"<div><p>By modifying the concept of polytomous surmise functions, this paper introduces polytomous surmising functions. Then, it is shown that there is a one-to-one correspondence <em>f</em> between granular polytomous spaces and polytomous surmising functions where polytomous surmising functions cannot be replaced with polytomous surmise functions. This result gives a correction for a correspondence between granular polytomous spaces and polytomous surmise functions. As an application of the correspondence <em>f</em>, this paper demonstrates that the pair <span><math><mrow><mo>(</mo><mi>f</mi><mo>,</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></math></span><span> of mappings forms a Galois connection where all granular polytomous spaces and all polytomous surmising functions are closed elements of this Galois connection.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the correspondence between granular polytomous spaces and polytomous surmising functions\",\"authors\":\"Xun Ge\",\"doi\":\"10.1016/j.jmp.2022.102743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By modifying the concept of polytomous surmise functions, this paper introduces polytomous surmising functions. Then, it is shown that there is a one-to-one correspondence <em>f</em> between granular polytomous spaces and polytomous surmising functions where polytomous surmising functions cannot be replaced with polytomous surmise functions. This result gives a correction for a correspondence between granular polytomous spaces and polytomous surmise functions. As an application of the correspondence <em>f</em>, this paper demonstrates that the pair <span><math><mrow><mo>(</mo><mi>f</mi><mo>,</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></math></span><span> of mappings forms a Galois connection where all granular polytomous spaces and all polytomous surmising functions are closed elements of this Galois connection.</span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022249622000815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249622000815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
On the correspondence between granular polytomous spaces and polytomous surmising functions
By modifying the concept of polytomous surmise functions, this paper introduces polytomous surmising functions. Then, it is shown that there is a one-to-one correspondence f between granular polytomous spaces and polytomous surmising functions where polytomous surmising functions cannot be replaced with polytomous surmise functions. This result gives a correction for a correspondence between granular polytomous spaces and polytomous surmise functions. As an application of the correspondence f, this paper demonstrates that the pair of mappings forms a Galois connection where all granular polytomous spaces and all polytomous surmising functions are closed elements of this Galois connection.