Mouyid Islam , Asim Alogaili , Fred Mannering , Michael Maness
{"title":"高速公路伤害严重程度模型中样本选择性的证据:新冠肺炎期间危险驾驶的案例","authors":"Mouyid Islam , Asim Alogaili , Fred Mannering , Michael Maness","doi":"10.1016/j.amar.2022.100263","DOIUrl":null,"url":null,"abstract":"<div><p>Research in highway safety continues to struggle to address two potentially important issues; the role that unobserved factors may play on resulting crash and injury-severity likelihoods, and the issue of identification in safety modeling caused by the self-selective sampling inherent in commonly used safety data (the fact that drivers in observed crashes are not a random sample of the driving population, with riskier drivers being over-represented in crash data bases). This paper addresses unobserved heterogeneity using mixing distributions and attempts to provide insight into the potential sample-selection problem by considering data before and during the COVID-19 pandemic. Based on a survey of vehicle usage (vehicle miles traveled) and subsequent statistical modeling, there is evidence that riskier drivers likely made up a larger proportion of vehicle miles traveled during the pandemic than before, suggesting that the increase in injury severities observed during COVID-19 could potentially be due to the over-representation of riskier drivers in observed crash data. However, by exploring Florida crash data before and during the pandemic (and focusing on crashes where risky behaviors were observed), the empirical analysis of observed crash data suggests (using random parameters multinomial logit models of driver-injury severities with heterogeneity in means and variances) that the observed increase in injury severity during the COVID-19 pandemic (calendar year 2020) was likely due largely to fundamental changes in driver behavior and less to changes in the sample selectivity of observed crash data. The findings of this paper provide some initial guidance to future work that can begin to more rigorously explore and assess the role of selectivity and resulting identification issues that may be present when using observed crash data.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"38 ","pages":"Article 100263"},"PeriodicalIF":12.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Evidence of sample selectivity in highway injury-severity models: The case of risky driving during COVID-19\",\"authors\":\"Mouyid Islam , Asim Alogaili , Fred Mannering , Michael Maness\",\"doi\":\"10.1016/j.amar.2022.100263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Research in highway safety continues to struggle to address two potentially important issues; the role that unobserved factors may play on resulting crash and injury-severity likelihoods, and the issue of identification in safety modeling caused by the self-selective sampling inherent in commonly used safety data (the fact that drivers in observed crashes are not a random sample of the driving population, with riskier drivers being over-represented in crash data bases). This paper addresses unobserved heterogeneity using mixing distributions and attempts to provide insight into the potential sample-selection problem by considering data before and during the COVID-19 pandemic. Based on a survey of vehicle usage (vehicle miles traveled) and subsequent statistical modeling, there is evidence that riskier drivers likely made up a larger proportion of vehicle miles traveled during the pandemic than before, suggesting that the increase in injury severities observed during COVID-19 could potentially be due to the over-representation of riskier drivers in observed crash data. However, by exploring Florida crash data before and during the pandemic (and focusing on crashes where risky behaviors were observed), the empirical analysis of observed crash data suggests (using random parameters multinomial logit models of driver-injury severities with heterogeneity in means and variances) that the observed increase in injury severity during the COVID-19 pandemic (calendar year 2020) was likely due largely to fundamental changes in driver behavior and less to changes in the sample selectivity of observed crash data. The findings of this paper provide some initial guidance to future work that can begin to more rigorously explore and assess the role of selectivity and resulting identification issues that may be present when using observed crash data.</p></div>\",\"PeriodicalId\":47520,\"journal\":{\"name\":\"Analytic Methods in Accident Research\",\"volume\":\"38 \",\"pages\":\"Article 100263\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytic Methods in Accident Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213665722000525\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665722000525","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Evidence of sample selectivity in highway injury-severity models: The case of risky driving during COVID-19
Research in highway safety continues to struggle to address two potentially important issues; the role that unobserved factors may play on resulting crash and injury-severity likelihoods, and the issue of identification in safety modeling caused by the self-selective sampling inherent in commonly used safety data (the fact that drivers in observed crashes are not a random sample of the driving population, with riskier drivers being over-represented in crash data bases). This paper addresses unobserved heterogeneity using mixing distributions and attempts to provide insight into the potential sample-selection problem by considering data before and during the COVID-19 pandemic. Based on a survey of vehicle usage (vehicle miles traveled) and subsequent statistical modeling, there is evidence that riskier drivers likely made up a larger proportion of vehicle miles traveled during the pandemic than before, suggesting that the increase in injury severities observed during COVID-19 could potentially be due to the over-representation of riskier drivers in observed crash data. However, by exploring Florida crash data before and during the pandemic (and focusing on crashes where risky behaviors were observed), the empirical analysis of observed crash data suggests (using random parameters multinomial logit models of driver-injury severities with heterogeneity in means and variances) that the observed increase in injury severity during the COVID-19 pandemic (calendar year 2020) was likely due largely to fundamental changes in driver behavior and less to changes in the sample selectivity of observed crash data. The findings of this paper provide some initial guidance to future work that can begin to more rigorously explore and assess the role of selectivity and resulting identification issues that may be present when using observed crash data.
期刊介绍:
Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.