颗粒土冻土取样技术及热模拟

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Mostefa Hani, Burak Evirgen
{"title":"颗粒土冻土取样技术及热模拟","authors":"Mostefa Hani,&nbsp;Burak Evirgen","doi":"10.1007/s10064-023-03372-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study uses a new sampling approach to allow undisturbed sampling without damaging the natural conditions of granular soils, thanks to the artificial ground freezing (AGF) method via a double-independent closed-circulation mechanism, over a 48-h period at ? 15 °C. The mechanical properties, textural characteristics, and freezing-thawing observations of three types of granular soils are investigated. The temperature distribution around freezing pipes, the shape of the frost line, and the degree of ice saturation were observed through a thermal simulation by a two-dimensional finite element analysis software, Plaxis 2D. The unconfined compressive strength and strain values of molded and cored specimens are compared. The coring samples are about 2.56 times stronger than the molded ones, depending on the method of soil sampling procedure in the same type of soil. The well-graded sandy samples (SW) achieve up to 1.05 and 2.95 MPa of force values in the molded and coring samples, respectively. Moreover, according to the types of soils, in the SW specimens, 1.57- and 1.39-fold strength values are obtained for poorly graded sand (SP) and well-graded gravel (GW) samples in the molded artificially frozen sampling process, respectively, as well as 1.17- and 1.09-fold strength increments in the coring frozen sampling process within the same order. The results of thermal module simulation nearly match those obtained using laboratory-based tests. The efficiency of the proposed sampling approach has been proven to represent actual on-site behavior. Besides, the strength results are perfect in this method with respect to traditional sampling methods.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"82 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A frozen soil sampling technique for granular soils and thermal modeling\",\"authors\":\"Mostefa Hani,&nbsp;Burak Evirgen\",\"doi\":\"10.1007/s10064-023-03372-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study uses a new sampling approach to allow undisturbed sampling without damaging the natural conditions of granular soils, thanks to the artificial ground freezing (AGF) method via a double-independent closed-circulation mechanism, over a 48-h period at ? 15 °C. The mechanical properties, textural characteristics, and freezing-thawing observations of three types of granular soils are investigated. The temperature distribution around freezing pipes, the shape of the frost line, and the degree of ice saturation were observed through a thermal simulation by a two-dimensional finite element analysis software, Plaxis 2D. The unconfined compressive strength and strain values of molded and cored specimens are compared. The coring samples are about 2.56 times stronger than the molded ones, depending on the method of soil sampling procedure in the same type of soil. The well-graded sandy samples (SW) achieve up to 1.05 and 2.95 MPa of force values in the molded and coring samples, respectively. Moreover, according to the types of soils, in the SW specimens, 1.57- and 1.39-fold strength values are obtained for poorly graded sand (SP) and well-graded gravel (GW) samples in the molded artificially frozen sampling process, respectively, as well as 1.17- and 1.09-fold strength increments in the coring frozen sampling process within the same order. The results of thermal module simulation nearly match those obtained using laboratory-based tests. The efficiency of the proposed sampling approach has been proven to represent actual on-site behavior. Besides, the strength results are perfect in this method with respect to traditional sampling methods.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"82 9\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-023-03372-4\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-023-03372-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用了一种新的采样方法,在不破坏颗粒土自然条件的情况下进行不受干扰的采样,这要归功于通过双独立封闭循环机制的人工地面冻结(AGF)方法,在48小时的时间内,在?15°C。研究了三种颗粒土的力学特性、结构特征和冻融观测结果。利用二维有限元分析软件Plaxis 2D进行热模拟,观察冻结管周围的温度分布、霜线形状和冰饱和度。比较了模制和芯制试件的无侧限抗压强度和应变值。在相同类型的土壤中,根据取样方法的不同,取心样品的强度约为模制样品的2.56倍。分级良好的砂质样品(SW)在成型样品和取心样品中分别达到1.05和2.95 MPa的力值。此外,根据土壤类型,在SW样品中,低级配砂(SP)和高级配砾石(GW)样品在人工成型冻结取样过程中分别获得了1.57倍和1.39倍的强度增量,在取心冻结取样过程中分别获得了1.17倍和1.09倍的强度增量。热模块仿真结果与实验室试验结果基本吻合。所提出的采样方法的有效性已被证明能够代表实际的现场行为。此外,与传统的采样方法相比,该方法的强度结果是完美的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A frozen soil sampling technique for granular soils and thermal modeling

This study uses a new sampling approach to allow undisturbed sampling without damaging the natural conditions of granular soils, thanks to the artificial ground freezing (AGF) method via a double-independent closed-circulation mechanism, over a 48-h period at ? 15 °C. The mechanical properties, textural characteristics, and freezing-thawing observations of three types of granular soils are investigated. The temperature distribution around freezing pipes, the shape of the frost line, and the degree of ice saturation were observed through a thermal simulation by a two-dimensional finite element analysis software, Plaxis 2D. The unconfined compressive strength and strain values of molded and cored specimens are compared. The coring samples are about 2.56 times stronger than the molded ones, depending on the method of soil sampling procedure in the same type of soil. The well-graded sandy samples (SW) achieve up to 1.05 and 2.95 MPa of force values in the molded and coring samples, respectively. Moreover, according to the types of soils, in the SW specimens, 1.57- and 1.39-fold strength values are obtained for poorly graded sand (SP) and well-graded gravel (GW) samples in the molded artificially frozen sampling process, respectively, as well as 1.17- and 1.09-fold strength increments in the coring frozen sampling process within the same order. The results of thermal module simulation nearly match those obtained using laboratory-based tests. The efficiency of the proposed sampling approach has been proven to represent actual on-site behavior. Besides, the strength results are perfect in this method with respect to traditional sampling methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信