通过使用显微镜和光学相干断层扫描测量锚定胶原基质的压实,可预测成纤维细胞张力的产生

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Melville B Vaughan, Gang Xu, Tracy L. Morris, Pratiksha Kshetri, Jing X Herwig
{"title":"通过使用显微镜和光学相干断层扫描测量锚定胶原基质的压实,可预测成纤维细胞张力的产生","authors":"Melville B Vaughan, Gang Xu, Tracy L. Morris, Pratiksha Kshetri, Jing X Herwig","doi":"10.1080/19336918.2019.1644855","DOIUrl":null,"url":null,"abstract":"ABSTRACT The anchored fibroblast-populated collagen matrix (aFPCM) is an appropriate model to study fibrocontractive disease mechanisms. Our goal was to determine if aFPCM height reduction (compaction) during development is sufficient to predict tension generation. Compaction was quantified daily by both traditional light microscopy and an optical coherence tomography (OCT) system. Contraction in aFPCM was revealed by releasing them from anchorage. We found that aFPCM contraction increase was correlated to the compaction increase. Cytochalasin D treatment reversibly inhibited compaction. Therefore, we demonstrated that aFPCM height reduction efficiently measures compaction, contraction, and relative maturity of the collagen matrix during development or treatment. In addition, we showed that OCT is suitable for effectively imaging the cross-sectional morphology of the aFPCM in culture. This study will pave the way for more efficient studies on the mechanisms of (and treatments that target) migration and contraction in wound healing and Dupuytren’s contracture in a tissue environment.","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"13 1","pages":"303 - 314"},"PeriodicalIF":3.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2019.1644855","citationCount":"3","resultStr":"{\"title\":\"Predictable fibroblast tension generation by measuring compaction of anchored collagen matrices using microscopy and optical coherence tomography\",\"authors\":\"Melville B Vaughan, Gang Xu, Tracy L. Morris, Pratiksha Kshetri, Jing X Herwig\",\"doi\":\"10.1080/19336918.2019.1644855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The anchored fibroblast-populated collagen matrix (aFPCM) is an appropriate model to study fibrocontractive disease mechanisms. Our goal was to determine if aFPCM height reduction (compaction) during development is sufficient to predict tension generation. Compaction was quantified daily by both traditional light microscopy and an optical coherence tomography (OCT) system. Contraction in aFPCM was revealed by releasing them from anchorage. We found that aFPCM contraction increase was correlated to the compaction increase. Cytochalasin D treatment reversibly inhibited compaction. Therefore, we demonstrated that aFPCM height reduction efficiently measures compaction, contraction, and relative maturity of the collagen matrix during development or treatment. In addition, we showed that OCT is suitable for effectively imaging the cross-sectional morphology of the aFPCM in culture. This study will pave the way for more efficient studies on the mechanisms of (and treatments that target) migration and contraction in wound healing and Dupuytren’s contracture in a tissue environment.\",\"PeriodicalId\":9680,\"journal\":{\"name\":\"Cell Adhesion & Migration\",\"volume\":\"13 1\",\"pages\":\"303 - 314\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19336918.2019.1644855\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Adhesion & Migration\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19336918.2019.1644855\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Adhesion & Migration","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2019.1644855","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

摘要锚定成纤维细胞聚集的胶原基质(aFPCM)是研究纤维收缩性疾病机制的合适模型。我们的目标是确定开发过程中FPCM高度降低(压实)是否足以预测张力的产生。每天通过传统的光学显微镜和光学相干断层扫描(OCT)系统对压实进行量化。通过将其从锚定处释放,可发现aFPCM收缩。我们发现aFPCM收缩增加与压实增加相关。细胞松弛素D处理可逆地抑制压实。因此,我们证明了aFPCM高度降低可以有效地测量胶原蛋白基质在发育或治疗过程中的压实、收缩和相对成熟度。此外,我们发现OCT适用于对培养物中aFPCM的横截面形态进行有效成像。这项研究将为更有效地研究组织环境中伤口愈合和Dupuytren挛缩的迁移和收缩机制(以及针对迁移和收缩的治疗方法)铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictable fibroblast tension generation by measuring compaction of anchored collagen matrices using microscopy and optical coherence tomography
ABSTRACT The anchored fibroblast-populated collagen matrix (aFPCM) is an appropriate model to study fibrocontractive disease mechanisms. Our goal was to determine if aFPCM height reduction (compaction) during development is sufficient to predict tension generation. Compaction was quantified daily by both traditional light microscopy and an optical coherence tomography (OCT) system. Contraction in aFPCM was revealed by releasing them from anchorage. We found that aFPCM contraction increase was correlated to the compaction increase. Cytochalasin D treatment reversibly inhibited compaction. Therefore, we demonstrated that aFPCM height reduction efficiently measures compaction, contraction, and relative maturity of the collagen matrix during development or treatment. In addition, we showed that OCT is suitable for effectively imaging the cross-sectional morphology of the aFPCM in culture. This study will pave the way for more efficient studies on the mechanisms of (and treatments that target) migration and contraction in wound healing and Dupuytren’s contracture in a tissue environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
7
审稿时长
53 weeks
期刊介绍: Cell Adhesion & Migration is a multi-disciplinary, peer reviewed open access journal that focuses on the biological or pathological implications of cell-cell and cell-microenvironment interactions. The main focus of this journal is fundamental science. The journal strives to serve a broad readership by regularly publishing review articles covering specific disciplines within the field, and by publishing focused issues that provide an overview on specific topics of interest within the field. Cell Adhesion & Migration publishes relevant and timely original research, as well as authoritative overviews, commentaries, and perspectives, providing context for the work presented in Cell Adhesion & Migration and for key results published elsewhere. Original research papers may cover all topics important in the field of cell-cell and cell-matrix interactions. Cell Adhesion & Migration also publishes articles related to cell biomechanics, biomaterial, and development of related imaging technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信