具有内热源和反应效应的局部热非平衡多孔介质双扩散对流稳定性分析

IF 4.3 3区 工程技术 Q1 MECHANICS
N. Noon, S. Haddad
{"title":"具有内热源和反应效应的局部热非平衡多孔介质双扩散对流稳定性分析","authors":"N. Noon, S. Haddad","doi":"10.1515/jnet-2022-0047","DOIUrl":null,"url":null,"abstract":"Abstract The internal heat source and reaction effects on the onset of thermosolutal convection in a local thermal non-equilibrium porous medium are examined, where the temperature of the fluid and the solid skeleton may differ. The linear instability and nonlinear stability theories of Darcy–Brinkman type with fixed boundary condition are carried out where the layer is heated and salted from below. The D 2 {D^{2}} Chebyshev tau technique is used to calculate the associated system of equations subject to the boundary conditions for both theories. Three different types of internal heat source function are considered, the first type increases across the layer, while the second decreases, and the third type heats and cools in a nonuniform way. The effect of different parameters on the Rayleigh number is depicted graphically. Moreover, the results detect that utilizing the internal heat source, reaction, and non-equilibrium have pronounced effects in determining the convection stability and instability thresholds.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stability Analysis of Double Diffusive Convection in Local Thermal Non-equilibrium Porous Medium with Internal Heat Source and Reaction Effects\",\"authors\":\"N. Noon, S. Haddad\",\"doi\":\"10.1515/jnet-2022-0047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The internal heat source and reaction effects on the onset of thermosolutal convection in a local thermal non-equilibrium porous medium are examined, where the temperature of the fluid and the solid skeleton may differ. The linear instability and nonlinear stability theories of Darcy–Brinkman type with fixed boundary condition are carried out where the layer is heated and salted from below. The D 2 {D^{2}} Chebyshev tau technique is used to calculate the associated system of equations subject to the boundary conditions for both theories. Three different types of internal heat source function are considered, the first type increases across the layer, while the second decreases, and the third type heats and cools in a nonuniform way. The effect of different parameters on the Rayleigh number is depicted graphically. Moreover, the results detect that utilizing the internal heat source, reaction, and non-equilibrium have pronounced effects in determining the convection stability and instability thresholds.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2022-0047\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2022-0047","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要研究了局部热非平衡多孔介质中流体和固体骨架温度可能不同的内部热源和反应对热溶质对流发生的影响。采用固定边界条件下的Darcy-Brinkman型线性不稳定性和非线性稳定性理论,对从下加热加盐的地层进行了研究。使用d2 {D^{2}} Chebyshev tau技术计算两种理论的边界条件下的相关方程组。考虑三种不同类型的内部热源函数,第一种类型在层间增加,第二种类型减少,第三种类型以不均匀的方式加热和冷却。用图形描述了不同参数对瑞利数的影响。此外,结果发现利用内部热源、反应和非平衡态对确定对流稳定性和不稳定性阈值有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability Analysis of Double Diffusive Convection in Local Thermal Non-equilibrium Porous Medium with Internal Heat Source and Reaction Effects
Abstract The internal heat source and reaction effects on the onset of thermosolutal convection in a local thermal non-equilibrium porous medium are examined, where the temperature of the fluid and the solid skeleton may differ. The linear instability and nonlinear stability theories of Darcy–Brinkman type with fixed boundary condition are carried out where the layer is heated and salted from below. The D 2 {D^{2}} Chebyshev tau technique is used to calculate the associated system of equations subject to the boundary conditions for both theories. Three different types of internal heat source function are considered, the first type increases across the layer, while the second decreases, and the third type heats and cools in a nonuniform way. The effect of different parameters on the Rayleigh number is depicted graphically. Moreover, the results detect that utilizing the internal heat source, reaction, and non-equilibrium have pronounced effects in determining the convection stability and instability thresholds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
18.20%
发文量
31
审稿时长
1 months
期刊介绍: The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena. Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level. The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信