{"title":"延长的秋季和冬季热浪对滞育病媒白纹伊蚊越冬适宜性的对比影响","authors":"Samantha L. Sturiale, Peter A. Armbruster","doi":"10.1016/j.cris.2023.100067","DOIUrl":null,"url":null,"abstract":"<div><p>Climate change is expected to dramatically alter autumnal and winter conditions in many temperate regions. However, limited data is available to accurately predict how these changes will impact species’ overwinter survival and post-winter fitness. Here, we determine how a longer, warmer fall period and winter heatwaves affect overwintering fitness and post-winter performance of the invasive mosquito vector, <em>Aedes albopictus</em>. We found that a longer, warmer fall period representative of early entry into diapause did not affect overwinter survival but did lead to reduced post-winter performance for multiple traits. Specifically, larvae that experienced longer, warmer fall conditions as diapause embryos exhibited reduced post-diapause larval starvation tolerance, increased post-diapause larval mortality, and longer post-diapause larval development compared to individuals from the short-fall treatments. These negative post-diapause fitness effects likely resulted from the greater energetic demands and/or damage incurred during the warmer, longer fall period. In contrast, exposure to winter heatwaves increased overwinter survival, possibly by allowing diapausing embryos to escape or repair cold injury. Finally, fall treatment and winter heatwaves had an interactive effect on male development time, while neither treatment impacted pupal mass in either sex. Overall, our results highlight that experiments that fail to measure post-diapause fitness are likely to substantially under-estimate the impacts of climate change on post-winter performance. Additionally, our results emphasize that it is crucial to consider the potentially conflicting effects of different aspects of climate change on a species’ overall overwintering success.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"4 ","pages":"Article 100067"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrasting effects of an extended fall period and winter heatwaves on the overwintering fitness of diapausing disease vector, Aedes albopictus\",\"authors\":\"Samantha L. Sturiale, Peter A. Armbruster\",\"doi\":\"10.1016/j.cris.2023.100067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Climate change is expected to dramatically alter autumnal and winter conditions in many temperate regions. However, limited data is available to accurately predict how these changes will impact species’ overwinter survival and post-winter fitness. Here, we determine how a longer, warmer fall period and winter heatwaves affect overwintering fitness and post-winter performance of the invasive mosquito vector, <em>Aedes albopictus</em>. We found that a longer, warmer fall period representative of early entry into diapause did not affect overwinter survival but did lead to reduced post-winter performance for multiple traits. Specifically, larvae that experienced longer, warmer fall conditions as diapause embryos exhibited reduced post-diapause larval starvation tolerance, increased post-diapause larval mortality, and longer post-diapause larval development compared to individuals from the short-fall treatments. These negative post-diapause fitness effects likely resulted from the greater energetic demands and/or damage incurred during the warmer, longer fall period. In contrast, exposure to winter heatwaves increased overwinter survival, possibly by allowing diapausing embryos to escape or repair cold injury. Finally, fall treatment and winter heatwaves had an interactive effect on male development time, while neither treatment impacted pupal mass in either sex. Overall, our results highlight that experiments that fail to measure post-diapause fitness are likely to substantially under-estimate the impacts of climate change on post-winter performance. Additionally, our results emphasize that it is crucial to consider the potentially conflicting effects of different aspects of climate change on a species’ overall overwintering success.</p></div>\",\"PeriodicalId\":34629,\"journal\":{\"name\":\"Current Research in Insect Science\",\"volume\":\"4 \",\"pages\":\"Article 100067\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Insect Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666515823000161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Insect Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666515823000161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Contrasting effects of an extended fall period and winter heatwaves on the overwintering fitness of diapausing disease vector, Aedes albopictus
Climate change is expected to dramatically alter autumnal and winter conditions in many temperate regions. However, limited data is available to accurately predict how these changes will impact species’ overwinter survival and post-winter fitness. Here, we determine how a longer, warmer fall period and winter heatwaves affect overwintering fitness and post-winter performance of the invasive mosquito vector, Aedes albopictus. We found that a longer, warmer fall period representative of early entry into diapause did not affect overwinter survival but did lead to reduced post-winter performance for multiple traits. Specifically, larvae that experienced longer, warmer fall conditions as diapause embryos exhibited reduced post-diapause larval starvation tolerance, increased post-diapause larval mortality, and longer post-diapause larval development compared to individuals from the short-fall treatments. These negative post-diapause fitness effects likely resulted from the greater energetic demands and/or damage incurred during the warmer, longer fall period. In contrast, exposure to winter heatwaves increased overwinter survival, possibly by allowing diapausing embryos to escape or repair cold injury. Finally, fall treatment and winter heatwaves had an interactive effect on male development time, while neither treatment impacted pupal mass in either sex. Overall, our results highlight that experiments that fail to measure post-diapause fitness are likely to substantially under-estimate the impacts of climate change on post-winter performance. Additionally, our results emphasize that it is crucial to consider the potentially conflicting effects of different aspects of climate change on a species’ overall overwintering success.