利用机器学习技术检测脑电图中的癫痫发作

Q3 Engineering
Diagnostyka Pub Date : 2023-01-06 DOI:10.29354/diag/158277
Muayed S. Al-Huseiny, Ahmed S. Sajit
{"title":"利用机器学习技术检测脑电图中的癫痫发作","authors":"Muayed S. Al-Huseiny, Ahmed S. Sajit","doi":"10.29354/diag/158277","DOIUrl":null,"url":null,"abstract":"In this research a public dataset of recordings of EEG signals of healthy subjects and epileptic patients was used to build three simple classifiers with low time complexity, these are decision tree, random forest and AdaBoost algorithm. The data was initially preprocessed to extract short waves of electrical signals representing brain activity. The signals are then used for the selected models. Experimental results showed that random forest achieved the best accuracy of detection of the presence/absence of epileptic seizure in the EEG signals at 97.23% followed by decision tree with accuracy of 96.93%. The least performing algorithm was the AdaBoost scoring accuracy of 87.23%. Further, the AUC scores were 99% for decision tree, 99.9% for random forest and 95.6% for AdaBoost. These results are comparable to state-of-the-art classifiers which have higher time complexity.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of epileptic seizures in EEG by using machine learning techniques\",\"authors\":\"Muayed S. Al-Huseiny, Ahmed S. Sajit\",\"doi\":\"10.29354/diag/158277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research a public dataset of recordings of EEG signals of healthy subjects and epileptic patients was used to build three simple classifiers with low time complexity, these are decision tree, random forest and AdaBoost algorithm. The data was initially preprocessed to extract short waves of electrical signals representing brain activity. The signals are then used for the selected models. Experimental results showed that random forest achieved the best accuracy of detection of the presence/absence of epileptic seizure in the EEG signals at 97.23% followed by decision tree with accuracy of 96.93%. The least performing algorithm was the AdaBoost scoring accuracy of 87.23%. Further, the AUC scores were 99% for decision tree, 99.9% for random forest and 95.6% for AdaBoost. These results are comparable to state-of-the-art classifiers which have higher time complexity.\",\"PeriodicalId\":52164,\"journal\":{\"name\":\"Diagnostyka\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostyka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29354/diag/158277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/158277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用健康受试者和癫痫患者脑电信号记录的公共数据集,构建了三个时间复杂度较低的简单分类器,即决策树、随机森林和AdaBoost算法。数据最初被预处理以提取代表大脑活动的短波电信号。然后将这些信号用于选定的模型。实验结果表明,随机森林在检测脑电信号中是否存在癫痫发作方面的准确率最高,为97.23%,其次是决策树,准确率为96.93%。表现最差的算法是AdaBoost评分准确率为87.23%。此外,决策树的AUC分额为99%,随机森林为99.9%,AdaBooster为95.6%。这些结果与具有更高时间复杂度的最先进的分类器相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of epileptic seizures in EEG by using machine learning techniques
In this research a public dataset of recordings of EEG signals of healthy subjects and epileptic patients was used to build three simple classifiers with low time complexity, these are decision tree, random forest and AdaBoost algorithm. The data was initially preprocessed to extract short waves of electrical signals representing brain activity. The signals are then used for the selected models. Experimental results showed that random forest achieved the best accuracy of detection of the presence/absence of epileptic seizure in the EEG signals at 97.23% followed by decision tree with accuracy of 96.93%. The least performing algorithm was the AdaBoost scoring accuracy of 87.23%. Further, the AUC scores were 99% for decision tree, 99.9% for random forest and 95.6% for AdaBoost. These results are comparable to state-of-the-art classifiers which have higher time complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diagnostyka
Diagnostyka Engineering-Mechanical Engineering
CiteScore
2.20
自引率
0.00%
发文量
41
期刊介绍: Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信