P. Grinevich, R. A. O. Sciences, Moscow, Russia., L. I. F. T. Physics, Chernogolovka, Lomonosov Moscow State University, Cmap, Cnrs, 'Ecole polytechnique, I. P. Paris, Palaiseau, France.
{"title":"多点散射体的传输特征值","authors":"P. Grinevich, R. A. O. Sciences, Moscow, Russia., L. I. F. T. Physics, Chernogolovka, Lomonosov Moscow State University, Cmap, Cnrs, 'Ecole polytechnique, I. P. Paris, Palaiseau, France.","doi":"10.32523/2306-6172-2021-9-4-17-25","DOIUrl":null,"url":null,"abstract":"We study the transmission eigenvalues for the multipoint scatterers of the Bethe- Peierls-Fermi-Zeldovich-Beresin-Faddeev type in dimensions d = 2 and d = 3. We show that for these scatterers: 1) each positive energy E is a transmission eigenvalue (in the strong sense) of infinite multiplicity; 2) each complex E is an interior transmission eigenvalue of infinite multiplicity. The case of dimension d = 1 is also discussed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"TRANSMISSION EIGENVALUES FOR MULTIPOINT SCATTERERS\",\"authors\":\"P. Grinevich, R. A. O. Sciences, Moscow, Russia., L. I. F. T. Physics, Chernogolovka, Lomonosov Moscow State University, Cmap, Cnrs, 'Ecole polytechnique, I. P. Paris, Palaiseau, France.\",\"doi\":\"10.32523/2306-6172-2021-9-4-17-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the transmission eigenvalues for the multipoint scatterers of the Bethe- Peierls-Fermi-Zeldovich-Beresin-Faddeev type in dimensions d = 2 and d = 3. We show that for these scatterers: 1) each positive energy E is a transmission eigenvalue (in the strong sense) of infinite multiplicity; 2) each complex E is an interior transmission eigenvalue of infinite multiplicity. The case of dimension d = 1 is also discussed.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/2306-6172-2021-9-4-17-25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2306-6172-2021-9-4-17-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TRANSMISSION EIGENVALUES FOR MULTIPOINT SCATTERERS
We study the transmission eigenvalues for the multipoint scatterers of the Bethe- Peierls-Fermi-Zeldovich-Beresin-Faddeev type in dimensions d = 2 and d = 3. We show that for these scatterers: 1) each positive energy E is a transmission eigenvalue (in the strong sense) of infinite multiplicity; 2) each complex E is an interior transmission eigenvalue of infinite multiplicity. The case of dimension d = 1 is also discussed.