J. Lau, C. Ko, C. Peng, Tzvy-Jang Tseng, Kai-Ming Yang, T. Xia, P. Lin, E. Lin, Leo Chang, H. Liu, Curry Lin, Yan-Jun Fan, D. Cheng, Winnie Lu
{"title":"六面模压面板级芯片级封装(plcsp)热循环测试与仿真","authors":"J. Lau, C. Ko, C. Peng, Tzvy-Jang Tseng, Kai-Ming Yang, T. Xia, P. Lin, E. Lin, Leo Chang, H. Liu, Curry Lin, Yan-Jun Fan, D. Cheng, Winnie Lu","doi":"10.4071/imaps.1421341","DOIUrl":null,"url":null,"abstract":"\n In this study, the reliability of the solder joints of a six-side molded panel-level chip-scale package (PLCSP) is investigated. Emphasis is placed on the thermal cycling test (−55°C Δ 125°C, 50-min cycle) of the six-side molded PLCSP on a printed circuit board. For comparison purpose, the one without six-side molded (ordinary) PLCSP is also subjected to the same test. The thermal cycling test results are plotted into a Weibull distribution, and the true Weibull slope and true characteristic life at 90% confidence are presented. The solder joint mean life ratio of these two cases and its confidence level are also determined. Furthermore, their solder joint failure location and failure mode are provided. Finally, a nonlinear, time- and temperature-dependent 3-D finite element simulation is performed for these two cases and correlated with the thermal cycling test results.","PeriodicalId":35312,"journal":{"name":"Journal of Microelectronics and Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Cycling Test and Simulation of Six-Side Molded Panel-Level Chip-Scale Packages (PLCSPs)\",\"authors\":\"J. Lau, C. Ko, C. Peng, Tzvy-Jang Tseng, Kai-Ming Yang, T. Xia, P. Lin, E. Lin, Leo Chang, H. Liu, Curry Lin, Yan-Jun Fan, D. Cheng, Winnie Lu\",\"doi\":\"10.4071/imaps.1421341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, the reliability of the solder joints of a six-side molded panel-level chip-scale package (PLCSP) is investigated. Emphasis is placed on the thermal cycling test (−55°C Δ 125°C, 50-min cycle) of the six-side molded PLCSP on a printed circuit board. For comparison purpose, the one without six-side molded (ordinary) PLCSP is also subjected to the same test. The thermal cycling test results are plotted into a Weibull distribution, and the true Weibull slope and true characteristic life at 90% confidence are presented. The solder joint mean life ratio of these two cases and its confidence level are also determined. Furthermore, their solder joint failure location and failure mode are provided. Finally, a nonlinear, time- and temperature-dependent 3-D finite element simulation is performed for these two cases and correlated with the thermal cycling test results.\",\"PeriodicalId\":35312,\"journal\":{\"name\":\"Journal of Microelectronics and Electronic Packaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectronics and Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/imaps.1421341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectronics and Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/imaps.1421341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Thermal Cycling Test and Simulation of Six-Side Molded Panel-Level Chip-Scale Packages (PLCSPs)
In this study, the reliability of the solder joints of a six-side molded panel-level chip-scale package (PLCSP) is investigated. Emphasis is placed on the thermal cycling test (−55°C Δ 125°C, 50-min cycle) of the six-side molded PLCSP on a printed circuit board. For comparison purpose, the one without six-side molded (ordinary) PLCSP is also subjected to the same test. The thermal cycling test results are plotted into a Weibull distribution, and the true Weibull slope and true characteristic life at 90% confidence are presented. The solder joint mean life ratio of these two cases and its confidence level are also determined. Furthermore, their solder joint failure location and failure mode are provided. Finally, a nonlinear, time- and temperature-dependent 3-D finite element simulation is performed for these two cases and correlated with the thermal cycling test results.
期刊介绍:
The International Microelectronics And Packaging Society (IMAPS) is the largest society dedicated to the advancement and growth of microelectronics and electronics packaging technologies through professional education. The Society’s portfolio of technologies is disseminated through symposia, conferences, workshops, professional development courses and other efforts. IMAPS currently has more than 4,000 members in the United States and more than 4,000 international members around the world.