医用直线加速器光中子谱的GEANT4模拟

IF 1.3 Q3 INSTRUMENTS & INSTRUMENTATION
Alexander Chernyaev, Mikhail Belikhin, Ekaterina Lykova, Alexey Shcherbakov
{"title":"医用直线加速器光中子谱的GEANT4模拟","authors":"Alexander Chernyaev, Mikhail Belikhin, Ekaterina Lykova, Alexey Shcherbakov","doi":"10.3390/qubs7030027","DOIUrl":null,"url":null,"abstract":"Photons with energy totaling more than 10 MeV provide efficient treatment for deeply seated tumors but interact with the nuclei of high-Z materials constituting a head of the linac. These interactions result in photoneutrons that deliver an additional out-of-field dose to the patient, which increases the risk of radiation-induced cancer. Monte Carlo simulation is an accurate strategy for estimating the effective photoneutron dose for a patient. In the current study, the possibility of using GEANT4 to calculate the photoneutron spectrum from the medical linac was investigated. The free-in-air photoneutron spectrum from a head of the linac was simulated using the NeutronHP experimental package. Validation of the simulated model was carried out based on a comparison of simulated and measured percentage depth–dose curves from photons in the water phantom. The obtained photoneutron spectrum was compared with the previously measured spectrum at the Varian Thilogy linac. GEANT4 may improve the accuracy of calculations of the effective dose based on photoneutrons. However, the simulated model should be improved and optimized. In the future, this model may constitute a physical basis for the prediction of the risk of radiation-induced cancer at our clinical center.","PeriodicalId":31879,"journal":{"name":"Quantum Beam Science","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GEANT4 Simulation of Photoneutron Spectrum from Medical Linear Accelerator\",\"authors\":\"Alexander Chernyaev, Mikhail Belikhin, Ekaterina Lykova, Alexey Shcherbakov\",\"doi\":\"10.3390/qubs7030027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photons with energy totaling more than 10 MeV provide efficient treatment for deeply seated tumors but interact with the nuclei of high-Z materials constituting a head of the linac. These interactions result in photoneutrons that deliver an additional out-of-field dose to the patient, which increases the risk of radiation-induced cancer. Monte Carlo simulation is an accurate strategy for estimating the effective photoneutron dose for a patient. In the current study, the possibility of using GEANT4 to calculate the photoneutron spectrum from the medical linac was investigated. The free-in-air photoneutron spectrum from a head of the linac was simulated using the NeutronHP experimental package. Validation of the simulated model was carried out based on a comparison of simulated and measured percentage depth–dose curves from photons in the water phantom. The obtained photoneutron spectrum was compared with the previously measured spectrum at the Varian Thilogy linac. GEANT4 may improve the accuracy of calculations of the effective dose based on photoneutrons. However, the simulated model should be improved and optimized. In the future, this model may constitute a physical basis for the prediction of the risk of radiation-induced cancer at our clinical center.\",\"PeriodicalId\":31879,\"journal\":{\"name\":\"Quantum Beam Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Beam Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/qubs7030027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Beam Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/qubs7030027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

总能量超过10兆电子伏的光子可以有效治疗深部肿瘤,但会与构成直线加速器头部的高z材料的原子核相互作用。这些相互作用导致光子中子向患者提供额外的场外剂量,这增加了辐射诱发癌症的风险。蒙特卡罗模拟是估计病人有效光子中子剂量的一种精确方法。在本研究中,研究了使用GEANT4计算医学直线加速器的光子中子谱的可能性。利用NeutronHP实验包对直线加速器头部的自由空气光子中子谱进行了模拟。通过对水影中光子的模拟和实测百分比深度-剂量曲线的比较,对模拟模型进行了验证。得到的光子中子谱与先前在瓦里安理论直线机上测量的谱进行了比较。GEANT4可以提高基于光子中子的有效剂量计算的准确性。但是,仿真模型还有待改进和优化。在未来,该模型可能构成我们临床中心辐射致癌风险预测的物理基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GEANT4 Simulation of Photoneutron Spectrum from Medical Linear Accelerator
Photons with energy totaling more than 10 MeV provide efficient treatment for deeply seated tumors but interact with the nuclei of high-Z materials constituting a head of the linac. These interactions result in photoneutrons that deliver an additional out-of-field dose to the patient, which increases the risk of radiation-induced cancer. Monte Carlo simulation is an accurate strategy for estimating the effective photoneutron dose for a patient. In the current study, the possibility of using GEANT4 to calculate the photoneutron spectrum from the medical linac was investigated. The free-in-air photoneutron spectrum from a head of the linac was simulated using the NeutronHP experimental package. Validation of the simulated model was carried out based on a comparison of simulated and measured percentage depth–dose curves from photons in the water phantom. The obtained photoneutron spectrum was compared with the previously measured spectrum at the Varian Thilogy linac. GEANT4 may improve the accuracy of calculations of the effective dose based on photoneutrons. However, the simulated model should be improved and optimized. In the future, this model may constitute a physical basis for the prediction of the risk of radiation-induced cancer at our clinical center.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
28.60%
发文量
27
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信