一类非标度不变的半线性热方程的稳定爆破解的构造

IF 0.8 Q2 MATHEMATICS
G. K. Duong, V. T. Nguyen, H. Zaag
{"title":"一类非标度不变的半线性热方程的稳定爆破解的构造","authors":"G. K. Duong, V. T. Nguyen, H. Zaag","doi":"10.2140/tunis.2019.1.13","DOIUrl":null,"url":null,"abstract":"We consider the semilinear heat equation \\begin{eqnarray*} \\partial_t u = \\Delta u + |u|^{p-1} u \\ln ^{\\alpha}( u^2 +2), \\end{eqnarray*} in the whole space $\\mathbb{R}^n$, where $p > 1$ and $ \\alpha \\in \\mathbb{R}$. Unlike the standard case $\\alpha = 0$, this equation is not scaling invariant. We construct for this equation a solution which blows up in finite time $T$ only at one blowup point $a$, according to the following asymptotic dynamics: \\begin{eqnarray*} u(x,t) \\sim \\psi(t) \\left(1 + \\frac{(p-1)|x-a|^2}{4p(T -t)|\\ln(T -t)|} \\right)^{-\\frac{1}{p-1}} \\text{ as } t \\to T, \\end{eqnarray*} where $\\psi(t)$ is the unique positive solution of the ODE \\begin{eqnarray*} \\psi' = \\psi^p \\ln^{\\alpha}(\\psi^2 +2), \\quad \\lim_{t\\to T}\\psi(t) = + \\infty. \\end{eqnarray*} The construction relies on the reduction of the problem to a finite dimensional one and a topological argument based on the index theory to get the conclusion. By the interpretation of the parameters of the finite dimensional problem in terms of the blowup time and the blowup point, we show the stability of the constructed solution with respect to perturbations in initial data. To our knowledge, this is the first successful construction for a genuinely non-scale invariant PDE of a stable blowup solution with the derivation of the blowup profile. From this point of view, we consider our result as a breakthrough.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2017-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/tunis.2019.1.13","citationCount":"22","resultStr":"{\"title\":\"Construction of a stable blowup solution with a prescribed behavior for a non-scaling-invariant semilinear heat equation\",\"authors\":\"G. K. Duong, V. T. Nguyen, H. Zaag\",\"doi\":\"10.2140/tunis.2019.1.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the semilinear heat equation \\\\begin{eqnarray*} \\\\partial_t u = \\\\Delta u + |u|^{p-1} u \\\\ln ^{\\\\alpha}( u^2 +2), \\\\end{eqnarray*} in the whole space $\\\\mathbb{R}^n$, where $p > 1$ and $ \\\\alpha \\\\in \\\\mathbb{R}$. Unlike the standard case $\\\\alpha = 0$, this equation is not scaling invariant. We construct for this equation a solution which blows up in finite time $T$ only at one blowup point $a$, according to the following asymptotic dynamics: \\\\begin{eqnarray*} u(x,t) \\\\sim \\\\psi(t) \\\\left(1 + \\\\frac{(p-1)|x-a|^2}{4p(T -t)|\\\\ln(T -t)|} \\\\right)^{-\\\\frac{1}{p-1}} \\\\text{ as } t \\\\to T, \\\\end{eqnarray*} where $\\\\psi(t)$ is the unique positive solution of the ODE \\\\begin{eqnarray*} \\\\psi' = \\\\psi^p \\\\ln^{\\\\alpha}(\\\\psi^2 +2), \\\\quad \\\\lim_{t\\\\to T}\\\\psi(t) = + \\\\infty. \\\\end{eqnarray*} The construction relies on the reduction of the problem to a finite dimensional one and a topological argument based on the index theory to get the conclusion. By the interpretation of the parameters of the finite dimensional problem in terms of the blowup time and the blowup point, we show the stability of the constructed solution with respect to perturbations in initial data. To our knowledge, this is the first successful construction for a genuinely non-scale invariant PDE of a stable blowup solution with the derivation of the blowup profile. From this point of view, we consider our result as a breakthrough.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/tunis.2019.1.13\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2019.1.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2019.1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 22

摘要

我们考虑了整个空间$\mathbb{R}^n$中的半线性热方程\boot{eqnarray*}\partial_t u=\Delta u+|u|^{p-1}u\ln^{\alpha}(u^2+2),\ end{eqnarray*},其中$p>1$和$\alpha\in\mathbb{R}$。与标准情况$\alpha=0$不同,此方程不是比例不变的。根据以下渐近动力学,我们为该方程构造了一个在有限时间$T$中仅在一个爆破点$a$爆破的解:\beart{eqnarray*}u(x,T)\sim\psi(T)\left(1+\frac{(p-1)|x-a|^2}{4p(T-T)|\ln(T-T,\end{eqnarray*},其中$\psi(t)$是ODE的唯一正解。\end{eqnarray*}构造依赖于将问题简化为有限维问题和基于索引理论的拓扑论证来得到结论。通过用爆破时间和爆破点来解释有限维问题的参数,我们证明了构造的解相对于初始数据扰动的稳定性。据我们所知,这是第一次成功地构造了稳定爆破解的真正非标度不变的PDE,并导出了爆破剖面。从这个角度来看,我们认为我们的结果是一个突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of a stable blowup solution with a prescribed behavior for a non-scaling-invariant semilinear heat equation
We consider the semilinear heat equation \begin{eqnarray*} \partial_t u = \Delta u + |u|^{p-1} u \ln ^{\alpha}( u^2 +2), \end{eqnarray*} in the whole space $\mathbb{R}^n$, where $p > 1$ and $ \alpha \in \mathbb{R}$. Unlike the standard case $\alpha = 0$, this equation is not scaling invariant. We construct for this equation a solution which blows up in finite time $T$ only at one blowup point $a$, according to the following asymptotic dynamics: \begin{eqnarray*} u(x,t) \sim \psi(t) \left(1 + \frac{(p-1)|x-a|^2}{4p(T -t)|\ln(T -t)|} \right)^{-\frac{1}{p-1}} \text{ as } t \to T, \end{eqnarray*} where $\psi(t)$ is the unique positive solution of the ODE \begin{eqnarray*} \psi' = \psi^p \ln^{\alpha}(\psi^2 +2), \quad \lim_{t\to T}\psi(t) = + \infty. \end{eqnarray*} The construction relies on the reduction of the problem to a finite dimensional one and a topological argument based on the index theory to get the conclusion. By the interpretation of the parameters of the finite dimensional problem in terms of the blowup time and the blowup point, we show the stability of the constructed solution with respect to perturbations in initial data. To our knowledge, this is the first successful construction for a genuinely non-scale invariant PDE of a stable blowup solution with the derivation of the blowup profile. From this point of view, we consider our result as a breakthrough.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信