建筑改造用增材制造城市多品种幕墙

Q1 Engineering
I. Larikova, Julia Fleckenstein, Ata Chokhachian, T. Auer, Wolfgang W. Weisser, K. Dörfler
{"title":"建筑改造用增材制造城市多品种幕墙","authors":"I. Larikova, Julia Fleckenstein, Ata Chokhachian, T. Auer, Wolfgang W. Weisser, K. Dörfler","doi":"10.47982/jfde.2022.powerskin.7","DOIUrl":null,"url":null,"abstract":"This research investigates the potential of additive manufacturing and digital planning tools for the creation of location-specific façade redesigns that can host cavity-dependent animal species and develops methods for their realization. The proposed approach is explored based on a case study of a student dormitory in need of renovation in the urban area of Munich. Based on theoretical knowledge and design experimentations that link the fields of architecture, climate-responsive design, terrestrial ecology, and digital fabrication, a set of design principles for the additive manufacturing of inhabitable ceramic tiles is conceived and transferred into a computational design tool. The conception of single tiles and the overall façade design are developed in terms of their positive climatic impact on both the animal species and humans, their nesting opportunities, their structural feasibility, and their integrability with standard ceramic façade systems. To verify the fabricability of the proposed design, a façade fragment was additively manufactured as a prototype in 1:1 scale. The initial findings presented in this paper provide a glimpse of how emerging digital technologies could provide new ways to expand current habitual architectural planning and fabrication tools, to enable the creation of site-specific solutions, and to bring together human and animal needs.","PeriodicalId":37451,"journal":{"name":"Journal of Facade Design and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Additively Manufactured Urban Multispecies Façades for Building Renovation\",\"authors\":\"I. Larikova, Julia Fleckenstein, Ata Chokhachian, T. Auer, Wolfgang W. Weisser, K. Dörfler\",\"doi\":\"10.47982/jfde.2022.powerskin.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research investigates the potential of additive manufacturing and digital planning tools for the creation of location-specific façade redesigns that can host cavity-dependent animal species and develops methods for their realization. The proposed approach is explored based on a case study of a student dormitory in need of renovation in the urban area of Munich. Based on theoretical knowledge and design experimentations that link the fields of architecture, climate-responsive design, terrestrial ecology, and digital fabrication, a set of design principles for the additive manufacturing of inhabitable ceramic tiles is conceived and transferred into a computational design tool. The conception of single tiles and the overall façade design are developed in terms of their positive climatic impact on both the animal species and humans, their nesting opportunities, their structural feasibility, and their integrability with standard ceramic façade systems. To verify the fabricability of the proposed design, a façade fragment was additively manufactured as a prototype in 1:1 scale. The initial findings presented in this paper provide a glimpse of how emerging digital technologies could provide new ways to expand current habitual architectural planning and fabrication tools, to enable the creation of site-specific solutions, and to bring together human and animal needs.\",\"PeriodicalId\":37451,\"journal\":{\"name\":\"Journal of Facade Design and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Facade Design and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47982/jfde.2022.powerskin.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Facade Design and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47982/jfde.2022.powerskin.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

本研究探讨了增材制造和数字规划工具在创建特定位置的farade重新设计方面的潜力,这些farade重新设计可以容纳依赖腔的动物物种,并开发了实现方法。本文以慕尼黑市区一个需要翻新的学生宿舍为例,探讨了所提出的方法。基于理论知识和设计实验,将建筑、气候响应设计、陆地生态和数字制造领域联系起来,构思了一套可居住瓷砖的增材制造设计原则,并将其转化为计算设计工具。单个瓷砖和整体立面设计的概念是根据它们对动物物种和人类的积极气候影响、筑巢机会、结构可行性以及与标准陶瓷立面系统的可集成性来开发的。为了验证所提出的设计的可制造性,以1:1的比例添加制造了一个farade碎片作为原型。本文中提出的初步发现提供了新兴数字技术如何提供新方法来扩展当前习惯的建筑规划和制造工具,以实现特定场地的解决方案,并将人类和动物的需求结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Additively Manufactured Urban Multispecies Façades for Building Renovation
This research investigates the potential of additive manufacturing and digital planning tools for the creation of location-specific façade redesigns that can host cavity-dependent animal species and develops methods for their realization. The proposed approach is explored based on a case study of a student dormitory in need of renovation in the urban area of Munich. Based on theoretical knowledge and design experimentations that link the fields of architecture, climate-responsive design, terrestrial ecology, and digital fabrication, a set of design principles for the additive manufacturing of inhabitable ceramic tiles is conceived and transferred into a computational design tool. The conception of single tiles and the overall façade design are developed in terms of their positive climatic impact on both the animal species and humans, their nesting opportunities, their structural feasibility, and their integrability with standard ceramic façade systems. To verify the fabricability of the proposed design, a façade fragment was additively manufactured as a prototype in 1:1 scale. The initial findings presented in this paper provide a glimpse of how emerging digital technologies could provide new ways to expand current habitual architectural planning and fabrication tools, to enable the creation of site-specific solutions, and to bring together human and animal needs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Facade Design and Engineering
Journal of Facade Design and Engineering Engineering-Architecture
CiteScore
1.90
自引率
0.00%
发文量
3
审稿时长
12 weeks
期刊介绍: The Journal of Facade Design and Engineering presents new research results and new proven practice in the field of facade design and engineering. The goal is to improve building technologies, as well as process management and architectural design. This journal is a valuable resource for professionals and academics involved in the design and engineering of building envelopes, including the following disciplines: Architecture Façade Engineering Climate Design Building Services Integration Building Physics Façade Design and Construction Management Novel Material Applications. The journal will be directed at the scientific community, but it will also feature papers that focus on the dissemination of science into practice and industrial innovations. In this way, readers explore the interaction between scientific developments, technical considerations and management issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信