{"title":"低地球轨道卫星网络的多目标路由算法","authors":"Xuan Xie, Linyu Huang, Chengwen Tang, Qian Ning","doi":"10.1002/sat.1476","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The low-earth orbit (LEO) satellite network, composed of a large number of satellite nodes, is a hot research topic at present. Due to the characteristics of the large-scale LEO satellite network, such as many satellite nodes, short orbit period, large dynamic change of topology, and unstable link-state, its communication quality of service (QoS) requirements are difficult to meet. Aiming at this problem, various factors that may affect data transmission are first analyzed. The network link selection problem is modeled as a multi-constraint optimization decision problem, a routing mathematical model based on linear programming (LP) is designed, and its solution is solved. Aiming at the problem of limited onboard computing resources, a multi-object optimization Dijkstra algorithm (MOODA) is designed. The MOODA finds the optimal path according to the comprehensive performance of the link. It solves the problems of poor comprehensive QoS performance and the low degree of load balancing of the paths found by the Dijkstra algorithm. The simulation results show that the paths found by the two algorithms have good QoS, robustness, and load balancing performance.</p>\n </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"41 5","pages":"427-440"},"PeriodicalIF":0.9000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective routing algorithms for low-earth orbit satellite network\",\"authors\":\"Xuan Xie, Linyu Huang, Chengwen Tang, Qian Ning\",\"doi\":\"10.1002/sat.1476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The low-earth orbit (LEO) satellite network, composed of a large number of satellite nodes, is a hot research topic at present. Due to the characteristics of the large-scale LEO satellite network, such as many satellite nodes, short orbit period, large dynamic change of topology, and unstable link-state, its communication quality of service (QoS) requirements are difficult to meet. Aiming at this problem, various factors that may affect data transmission are first analyzed. The network link selection problem is modeled as a multi-constraint optimization decision problem, a routing mathematical model based on linear programming (LP) is designed, and its solution is solved. Aiming at the problem of limited onboard computing resources, a multi-object optimization Dijkstra algorithm (MOODA) is designed. The MOODA finds the optimal path according to the comprehensive performance of the link. It solves the problems of poor comprehensive QoS performance and the low degree of load balancing of the paths found by the Dijkstra algorithm. The simulation results show that the paths found by the two algorithms have good QoS, robustness, and load balancing performance.</p>\\n </div>\",\"PeriodicalId\":50289,\"journal\":{\"name\":\"International Journal of Satellite Communications and Networking\",\"volume\":\"41 5\",\"pages\":\"427-440\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Satellite Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/sat.1476\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Satellite Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sat.1476","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Multi-objective routing algorithms for low-earth orbit satellite network
The low-earth orbit (LEO) satellite network, composed of a large number of satellite nodes, is a hot research topic at present. Due to the characteristics of the large-scale LEO satellite network, such as many satellite nodes, short orbit period, large dynamic change of topology, and unstable link-state, its communication quality of service (QoS) requirements are difficult to meet. Aiming at this problem, various factors that may affect data transmission are first analyzed. The network link selection problem is modeled as a multi-constraint optimization decision problem, a routing mathematical model based on linear programming (LP) is designed, and its solution is solved. Aiming at the problem of limited onboard computing resources, a multi-object optimization Dijkstra algorithm (MOODA) is designed. The MOODA finds the optimal path according to the comprehensive performance of the link. It solves the problems of poor comprehensive QoS performance and the low degree of load balancing of the paths found by the Dijkstra algorithm. The simulation results show that the paths found by the two algorithms have good QoS, robustness, and load balancing performance.
期刊介绍:
The journal covers all aspects of the theory, practice and operation of satellite systems and networks. Papers must address some aspect of satellite systems or their applications. Topics covered include:
-Satellite communication and broadcast systems-
Satellite navigation and positioning systems-
Satellite networks and networking-
Hybrid systems-
Equipment-earth stations/terminals, payloads, launchers and components-
Description of new systems, operations and trials-
Planning and operations-
Performance analysis-
Interoperability-
Propagation and interference-
Enabling technologies-coding/modulation/signal processing, etc.-
Mobile/Broadcast/Navigation/fixed services-
Service provision, marketing, economics and business aspects-
Standards and regulation-
Network protocols