{"title":"序统计累积分布函数的适当数学模型,以构造最短长度或等尾的精确公差限和置信区间","authors":"N. Nechval, G. Berzins, K. Nechval","doi":"10.37394/23206.2023.22.20","DOIUrl":null,"url":null,"abstract":"The technique used here emphasizes pivotal quantities and ancillary statistics relevant for obtaining tolerance limits (or confidence intervals) for anticipated outcomes of applied stochastic models under parametric uncertainty and is applicable whenever the statistical problem is invariant under a group of transformations that acts transitively on the parameter space. It does not require the construction of any tables and is applicable whether the experimental data are complete or Type II censored. The exact tolerance limits on order statistics associated with sampling from underlying distributions can be found easily and quickly making tables, simulation, Monte-Carlo estimated percentiles, special computer programs, and approximation unnecessary. The proposed technique is based on a probability transformation and pivotal quantity averaging. It is conceptually simple and easy to use. The discussion is restricted to one-sided tolerance limits. Finally, we give practical numerical examples, where the proposed analytical methodology is illustrated in terms of the exponential distribution. Applications to other log-location-scale distributions could follow directly.","PeriodicalId":55878,"journal":{"name":"WSEAS Transactions on Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adequate Mathematical Models of the Cumulative Distribution Function of Order Statistics to Construct Accurate Tolerance Limits and Confidence Intervals of the Shortest Length or Equal Tails\",\"authors\":\"N. Nechval, G. Berzins, K. Nechval\",\"doi\":\"10.37394/23206.2023.22.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The technique used here emphasizes pivotal quantities and ancillary statistics relevant for obtaining tolerance limits (or confidence intervals) for anticipated outcomes of applied stochastic models under parametric uncertainty and is applicable whenever the statistical problem is invariant under a group of transformations that acts transitively on the parameter space. It does not require the construction of any tables and is applicable whether the experimental data are complete or Type II censored. The exact tolerance limits on order statistics associated with sampling from underlying distributions can be found easily and quickly making tables, simulation, Monte-Carlo estimated percentiles, special computer programs, and approximation unnecessary. The proposed technique is based on a probability transformation and pivotal quantity averaging. It is conceptually simple and easy to use. The discussion is restricted to one-sided tolerance limits. Finally, we give practical numerical examples, where the proposed analytical methodology is illustrated in terms of the exponential distribution. Applications to other log-location-scale distributions could follow directly.\",\"PeriodicalId\":55878,\"journal\":{\"name\":\"WSEAS Transactions on Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23206.2023.22.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23206.2023.22.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Adequate Mathematical Models of the Cumulative Distribution Function of Order Statistics to Construct Accurate Tolerance Limits and Confidence Intervals of the Shortest Length or Equal Tails
The technique used here emphasizes pivotal quantities and ancillary statistics relevant for obtaining tolerance limits (or confidence intervals) for anticipated outcomes of applied stochastic models under parametric uncertainty and is applicable whenever the statistical problem is invariant under a group of transformations that acts transitively on the parameter space. It does not require the construction of any tables and is applicable whether the experimental data are complete or Type II censored. The exact tolerance limits on order statistics associated with sampling from underlying distributions can be found easily and quickly making tables, simulation, Monte-Carlo estimated percentiles, special computer programs, and approximation unnecessary. The proposed technique is based on a probability transformation and pivotal quantity averaging. It is conceptually simple and easy to use. The discussion is restricted to one-sided tolerance limits. Finally, we give practical numerical examples, where the proposed analytical methodology is illustrated in terms of the exponential distribution. Applications to other log-location-scale distributions could follow directly.
期刊介绍:
WSEAS Transactions on Mathematics publishes original research papers relating to applied and theoretical mathematics. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with linear algebra, numerical analysis, differential equations, statistics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.