{"title":"空气污染对曼陀罗工厂的影响。花粉结构、蛋白质和萌发","authors":"Chetna Ugale, Jaykiran A. Tidke","doi":"10.1007/s10453-022-09753-8","DOIUrl":null,"url":null,"abstract":"<div><p>Plants have been exposed to the urban environment for many years, and in response to air pollution, they have adopted selective and adaptive changes. In this study, we examined <i>Datura</i> pollen deposition on the stigma for germination and also assessed the viability of the pollen along with its element and protein content. According to the hypothesis that pollen physiology is negatively impacted by air pollutants, we expected a highly polluted area to have a high degree of pollen abortion with low amount of total protein content with accumulation of different elements because the high amount of particulate pollutants deposited on pollen should alter its physiology. We found that pollen viability at all three different locations is significantly similar, while pollen germination is significantly affected by pollution in Amravati City. The protein content in pollen and its shape is also affected. Correlation analysis reveals the interrelationship between pollen viability, germination, elements and protein content with respect to the polluted area. Principal component analysis was used to determine pollen characteristics contributing to discriminate at the three locations studied. Results revealed that <i>Datura</i> is adaptive in nature. Further study is needed to evaluate the adaptive evolution of <i>Datura</i> with respect to pollen tube sensitivity and tolerance to environmental pollution.\n</p></div>","PeriodicalId":7718,"journal":{"name":"Aerobiologia","volume":"38 3","pages":"379 - 390"},"PeriodicalIF":2.2000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Air pollution effects on Datura innoxia mill. pollen structure, protein and germination\",\"authors\":\"Chetna Ugale, Jaykiran A. Tidke\",\"doi\":\"10.1007/s10453-022-09753-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plants have been exposed to the urban environment for many years, and in response to air pollution, they have adopted selective and adaptive changes. In this study, we examined <i>Datura</i> pollen deposition on the stigma for germination and also assessed the viability of the pollen along with its element and protein content. According to the hypothesis that pollen physiology is negatively impacted by air pollutants, we expected a highly polluted area to have a high degree of pollen abortion with low amount of total protein content with accumulation of different elements because the high amount of particulate pollutants deposited on pollen should alter its physiology. We found that pollen viability at all three different locations is significantly similar, while pollen germination is significantly affected by pollution in Amravati City. The protein content in pollen and its shape is also affected. Correlation analysis reveals the interrelationship between pollen viability, germination, elements and protein content with respect to the polluted area. Principal component analysis was used to determine pollen characteristics contributing to discriminate at the three locations studied. Results revealed that <i>Datura</i> is adaptive in nature. Further study is needed to evaluate the adaptive evolution of <i>Datura</i> with respect to pollen tube sensitivity and tolerance to environmental pollution.\\n</p></div>\",\"PeriodicalId\":7718,\"journal\":{\"name\":\"Aerobiologia\",\"volume\":\"38 3\",\"pages\":\"379 - 390\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerobiologia\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10453-022-09753-8\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerobiologia","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10453-022-09753-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Air pollution effects on Datura innoxia mill. pollen structure, protein and germination
Plants have been exposed to the urban environment for many years, and in response to air pollution, they have adopted selective and adaptive changes. In this study, we examined Datura pollen deposition on the stigma for germination and also assessed the viability of the pollen along with its element and protein content. According to the hypothesis that pollen physiology is negatively impacted by air pollutants, we expected a highly polluted area to have a high degree of pollen abortion with low amount of total protein content with accumulation of different elements because the high amount of particulate pollutants deposited on pollen should alter its physiology. We found that pollen viability at all three different locations is significantly similar, while pollen germination is significantly affected by pollution in Amravati City. The protein content in pollen and its shape is also affected. Correlation analysis reveals the interrelationship between pollen viability, germination, elements and protein content with respect to the polluted area. Principal component analysis was used to determine pollen characteristics contributing to discriminate at the three locations studied. Results revealed that Datura is adaptive in nature. Further study is needed to evaluate the adaptive evolution of Datura with respect to pollen tube sensitivity and tolerance to environmental pollution.
期刊介绍:
Associated with the International Association for Aerobiology, Aerobiologia is an international medium for original research and review articles in the interdisciplinary fields of aerobiology and interaction of human, plant and animal systems on the biosphere. Coverage includes bioaerosols, transport mechanisms, biometeorology, climatology, air-sea interaction, land-surface/atmosphere interaction, biological pollution, biological input to global change, microbiology, aeromycology, aeropalynology, arthropod dispersal and environmental policy. Emphasis is placed on respiratory allergology, plant pathology, pest management, biological weathering and biodeterioration, indoor air quality, air-conditioning technology, industrial aerobiology and more.
Aerobiologia serves aerobiologists, and other professionals in medicine, public health, industrial and environmental hygiene, biological sciences, agriculture, atmospheric physics, botany, environmental science and cultural heritage.