Ivano Gennaro, John Weber, Alberto Vitale Brovarone, Jeanette Arkle, Xu Chu
{"title":"地质测温对特立尼达北部山脉热构造、变质作用和剥露的限制","authors":"Ivano Gennaro, John Weber, Alberto Vitale Brovarone, Jeanette Arkle, Xu Chu","doi":"10.1111/jmg.12697","DOIUrl":null,"url":null,"abstract":"<p>The Northern Range of Trinidad is composed of Mesozoic passive margin sedimentary rocks that underwent ductile deformation and subgreenschist- to greenschist-facies metamorphism in the early Miocene. Previous studies suggested a two-stage formation of the Northern Range between the Caribbean and South American plates: an initial collision drove mountain building in the Miocene and subsequent strike-slip plate motion preferentially exhumed the western segment, producing a westward increase in the metamorphic thermal gradient. However, these studies were not able to resolve whether this gradient was discrete or continuous so the tectonic model awaits testing. In this study we use Raman spectroscopy on carbonaceous material (RSCM), an empirical geothermometer, to constrain peak temperatures across the Northern Range with a greater resolution than was available in previous studies. The RSCM temperatures show an abrupt increase from 337°C ± 10°C in the east to 442°C ± 16°C west of Chupara Point, where a range-cutting fault (Chupara Fault) had been inferred in previous geologic mapping campaigns. Thus, the discrete thermal discontinuity of ~100°C very likely represents the Chupara Fault. Our RSCM-derived peak metamorphic temperatures are 50°C to 100°C higher than those from previous estimates, requiring revision of tectonic models to account for deeper burial and greater exhumation. The peak metamorphic conditions determined here, and the deduced timing of faulting from published thermochronological data, are consistent with the two-stage tectonic model proposed in previous studies.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geothermometric constraints on the thermal architecture, metamorphism, and exhumation of the Northern Range, Trinidad\",\"authors\":\"Ivano Gennaro, John Weber, Alberto Vitale Brovarone, Jeanette Arkle, Xu Chu\",\"doi\":\"10.1111/jmg.12697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Northern Range of Trinidad is composed of Mesozoic passive margin sedimentary rocks that underwent ductile deformation and subgreenschist- to greenschist-facies metamorphism in the early Miocene. Previous studies suggested a two-stage formation of the Northern Range between the Caribbean and South American plates: an initial collision drove mountain building in the Miocene and subsequent strike-slip plate motion preferentially exhumed the western segment, producing a westward increase in the metamorphic thermal gradient. However, these studies were not able to resolve whether this gradient was discrete or continuous so the tectonic model awaits testing. In this study we use Raman spectroscopy on carbonaceous material (RSCM), an empirical geothermometer, to constrain peak temperatures across the Northern Range with a greater resolution than was available in previous studies. The RSCM temperatures show an abrupt increase from 337°C ± 10°C in the east to 442°C ± 16°C west of Chupara Point, where a range-cutting fault (Chupara Fault) had been inferred in previous geologic mapping campaigns. Thus, the discrete thermal discontinuity of ~100°C very likely represents the Chupara Fault. Our RSCM-derived peak metamorphic temperatures are 50°C to 100°C higher than those from previous estimates, requiring revision of tectonic models to account for deeper burial and greater exhumation. The peak metamorphic conditions determined here, and the deduced timing of faulting from published thermochronological data, are consistent with the two-stage tectonic model proposed in previous studies.</p>\",\"PeriodicalId\":16472,\"journal\":{\"name\":\"Journal of Metamorphic Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Metamorphic Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12697\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metamorphic Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12697","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Geothermometric constraints on the thermal architecture, metamorphism, and exhumation of the Northern Range, Trinidad
The Northern Range of Trinidad is composed of Mesozoic passive margin sedimentary rocks that underwent ductile deformation and subgreenschist- to greenschist-facies metamorphism in the early Miocene. Previous studies suggested a two-stage formation of the Northern Range between the Caribbean and South American plates: an initial collision drove mountain building in the Miocene and subsequent strike-slip plate motion preferentially exhumed the western segment, producing a westward increase in the metamorphic thermal gradient. However, these studies were not able to resolve whether this gradient was discrete or continuous so the tectonic model awaits testing. In this study we use Raman spectroscopy on carbonaceous material (RSCM), an empirical geothermometer, to constrain peak temperatures across the Northern Range with a greater resolution than was available in previous studies. The RSCM temperatures show an abrupt increase from 337°C ± 10°C in the east to 442°C ± 16°C west of Chupara Point, where a range-cutting fault (Chupara Fault) had been inferred in previous geologic mapping campaigns. Thus, the discrete thermal discontinuity of ~100°C very likely represents the Chupara Fault. Our RSCM-derived peak metamorphic temperatures are 50°C to 100°C higher than those from previous estimates, requiring revision of tectonic models to account for deeper burial and greater exhumation. The peak metamorphic conditions determined here, and the deduced timing of faulting from published thermochronological data, are consistent with the two-stage tectonic model proposed in previous studies.
期刊介绍:
The journal, which is published nine times a year, encompasses the entire range of metamorphic studies, from the scale of the individual crystal to that of lithospheric plates, including regional studies of metamorphic terranes, modelling of metamorphic processes, microstructural and deformation studies in relation to metamorphism, geochronology and geochemistry in metamorphic systems, the experimental study of metamorphic reactions, properties of metamorphic minerals and rocks and the economic aspects of metamorphic terranes.