{"title":"基于互信息最大化的传感器网络协调目标跟踪","authors":"Yintao Wang, Fuchao Xie","doi":"10.1515/ijnsns-2018-0100","DOIUrl":null,"url":null,"abstract":"Abstract This paper addresses the problem of coordinated target tracking in sensor networks. For a typical target tracking scene with nonlinear bearing-only measurements, we first investigate the mutual information between multiple sensors and the target state. To improve the performance of target tracking, we analyzed the relative positions between sensor agents and the target to be tracked and derived the optimal positions for sensors in the network by mutual information maximization. Simulation results are presented and discussed to demonstrate that the performance of estimated target states could be improved by the proposed method.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":"23 1","pages":"947 - 956"},"PeriodicalIF":1.4000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordinated target tracking in sensor networks by maximizing mutual information\",\"authors\":\"Yintao Wang, Fuchao Xie\",\"doi\":\"10.1515/ijnsns-2018-0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper addresses the problem of coordinated target tracking in sensor networks. For a typical target tracking scene with nonlinear bearing-only measurements, we first investigate the mutual information between multiple sensors and the target state. To improve the performance of target tracking, we analyzed the relative positions between sensor agents and the target to be tracked and derived the optimal positions for sensors in the network by mutual information maximization. Simulation results are presented and discussed to demonstrate that the performance of estimated target states could be improved by the proposed method.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\"23 1\",\"pages\":\"947 - 956\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2018-0100\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2018-0100","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Coordinated target tracking in sensor networks by maximizing mutual information
Abstract This paper addresses the problem of coordinated target tracking in sensor networks. For a typical target tracking scene with nonlinear bearing-only measurements, we first investigate the mutual information between multiple sensors and the target state. To improve the performance of target tracking, we analyzed the relative positions between sensor agents and the target to be tracked and derived the optimal positions for sensors in the network by mutual information maximization. Simulation results are presented and discussed to demonstrate that the performance of estimated target states could be improved by the proposed method.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.