不同强酸和二氧化硅涂层对树脂-钛附着力的影响

IF 1.6 4区 化学 Q4 CHEMISTRY, PHYSICAL
M. Zakir, T. Laiho, S. Granroth, E. Kukk, C. Chu, J. Tsoi, J. Matinlinna
{"title":"不同强酸和二氧化硅涂层对树脂-钛附着力的影响","authors":"M. Zakir, T. Laiho, S. Granroth, E. Kukk, C. Chu, J. Tsoi, J. Matinlinna","doi":"10.1002/sia.7239","DOIUrl":null,"url":null,"abstract":"The presence of Si on the Ti surface is quintessential for a strong, durable silane‐based adhesion utilized in several dental applications. Silica‐coating and silanization form durable ≡Si‐O‐Si≡ bonds, which might have a positive effect on resin‐Ti adhesion. This laboratory study studied the effect of strong acids, their blends, and silica‐coating on Ti and resin‐Ti bonding. One‐hundred sixty‐eight c.p. grade 2 polished Ti samples (10 mm × 10 mm × 1 mm), out of which 96 were etched with 9% and 12%HF, a blend of 35%HCl+85%H3PO4 and a blend of 69%HNO3+35%HCl at 60°C, each for 2 min. One half was silica‐coated (Rocatec™ Plus, 110 μm SiO2‐coated‐Al2O3). Sixty Ti samples were first silica‐coated, and then, 48 of them were etched with 9%HF, 12%HF, a blend of 35%HCl+85%H3PO4, and a blend of 69%HNO3+35%HCl at 60°C for 2 min. SEM, EDX, XPS, and Ra analyses were carried out. Polished Ti samples were controls. All silanizations were carried out with a blend of 0.3 vol% 1,2‐bis‐(triethoxysilyl)ethane+1.0 vol% 3‐acryloxypropyltrimethoxysilane. Multilink™ Automix self‐adhesive resin composite cement was used in adhesion testing, and the samples were artificially aged followed by enclosed‐mold micro‐shear test on day 1 and weeks 1, 4, and 8. Failure mode analysis and statistical analysis with one‐way/two‐way ANOVA (p < 0.05) were carried out. HF etching produced the highest surface roughness. XPS analysis identified after etching with HF a variety of Ti and Si ions: Ti4+, Ti3+, Ti2+, and Ti0 and, on the other hand, Si4+, Si3+, and Si2+. A gradual decrease in adhesion strength was observed after artificial aging. Adhesive and cohesive failures were observed.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"55 1","pages":"701 - 711"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The effect of different strong acids and silica‐coating on resin Ti adhesion\",\"authors\":\"M. Zakir, T. Laiho, S. Granroth, E. Kukk, C. Chu, J. Tsoi, J. Matinlinna\",\"doi\":\"10.1002/sia.7239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presence of Si on the Ti surface is quintessential for a strong, durable silane‐based adhesion utilized in several dental applications. Silica‐coating and silanization form durable ≡Si‐O‐Si≡ bonds, which might have a positive effect on resin‐Ti adhesion. This laboratory study studied the effect of strong acids, their blends, and silica‐coating on Ti and resin‐Ti bonding. One‐hundred sixty‐eight c.p. grade 2 polished Ti samples (10 mm × 10 mm × 1 mm), out of which 96 were etched with 9% and 12%HF, a blend of 35%HCl+85%H3PO4 and a blend of 69%HNO3+35%HCl at 60°C, each for 2 min. One half was silica‐coated (Rocatec™ Plus, 110 μm SiO2‐coated‐Al2O3). Sixty Ti samples were first silica‐coated, and then, 48 of them were etched with 9%HF, 12%HF, a blend of 35%HCl+85%H3PO4, and a blend of 69%HNO3+35%HCl at 60°C for 2 min. SEM, EDX, XPS, and Ra analyses were carried out. Polished Ti samples were controls. All silanizations were carried out with a blend of 0.3 vol% 1,2‐bis‐(triethoxysilyl)ethane+1.0 vol% 3‐acryloxypropyltrimethoxysilane. Multilink™ Automix self‐adhesive resin composite cement was used in adhesion testing, and the samples were artificially aged followed by enclosed‐mold micro‐shear test on day 1 and weeks 1, 4, and 8. Failure mode analysis and statistical analysis with one‐way/two‐way ANOVA (p < 0.05) were carried out. HF etching produced the highest surface roughness. XPS analysis identified after etching with HF a variety of Ti and Si ions: Ti4+, Ti3+, Ti2+, and Ti0 and, on the other hand, Si4+, Si3+, and Si2+. A gradual decrease in adhesion strength was observed after artificial aging. Adhesive and cohesive failures were observed.\",\"PeriodicalId\":22062,\"journal\":{\"name\":\"Surface and Interface Analysis\",\"volume\":\"55 1\",\"pages\":\"701 - 711\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface and Interface Analysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/sia.7239\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface and Interface Analysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7239","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

Ti表面Si的存在是几种牙科应用中使用的强大、耐用的硅烷基粘合剂的典型特征。二氧化硅涂层和硅烷化形成耐用的Select-Si-O-Si Select键,这可能对树脂-Ti的粘附产生积极影响。本实验室研究研究了强酸、它们的混合物和二氧化硅涂层对Ti和树脂-Ti结合的影响。一百六十八个c.p.2级抛光Ti样品(10 mm × 10毫米 × 1 mm),其中96个用9%和12%的HF、35%的HCl+85%的H3PO4的混合物和69%的HNO3+35%的HCl的混合物在60°C下蚀刻2分钟。一半涂有二氧化硅(Rocatec™ 加110 μm SiO2涂层的Al2O3)。首先对60个Ti样品进行二氧化硅涂层,然后用9%HF、12%HF、35%HCl+85%H3PO4的混合物和69%HNO3+35%HCl的混合物在60°C下蚀刻其中48个样品2分钟。进行SEM、EDX、XPS和Ra分析。抛光Ti样品为对照。所有硅烷化都是用0.3 vol%1,2-双(三乙氧基甲硅烷基)乙烷+1.0 vol%3-丙烯酰氧基丙基三甲氧基硅烷的混合物进行的。多链接™ 在附着力测试中使用Automix自粘树脂复合水泥,并对样品进行人工老化,然后在第1天和第1、4和8周进行闭模微剪切测试。失效模式分析和单向/双向方差分析的统计分析(p< 0.05)。HF蚀刻产生最高的表面粗糙度。XPS分析在用HF蚀刻后鉴定出各种Ti和Si离子:Ti4+、Ti3+、Ti2+和Ti0,另一方面,Si4+、Si3+和Si2+。在人工老化之后,观察到粘合强度逐渐降低。观察到粘合剂和内聚失效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of different strong acids and silica‐coating on resin Ti adhesion
The presence of Si on the Ti surface is quintessential for a strong, durable silane‐based adhesion utilized in several dental applications. Silica‐coating and silanization form durable ≡Si‐O‐Si≡ bonds, which might have a positive effect on resin‐Ti adhesion. This laboratory study studied the effect of strong acids, their blends, and silica‐coating on Ti and resin‐Ti bonding. One‐hundred sixty‐eight c.p. grade 2 polished Ti samples (10 mm × 10 mm × 1 mm), out of which 96 were etched with 9% and 12%HF, a blend of 35%HCl+85%H3PO4 and a blend of 69%HNO3+35%HCl at 60°C, each for 2 min. One half was silica‐coated (Rocatec™ Plus, 110 μm SiO2‐coated‐Al2O3). Sixty Ti samples were first silica‐coated, and then, 48 of them were etched with 9%HF, 12%HF, a blend of 35%HCl+85%H3PO4, and a blend of 69%HNO3+35%HCl at 60°C for 2 min. SEM, EDX, XPS, and Ra analyses were carried out. Polished Ti samples were controls. All silanizations were carried out with a blend of 0.3 vol% 1,2‐bis‐(triethoxysilyl)ethane+1.0 vol% 3‐acryloxypropyltrimethoxysilane. Multilink™ Automix self‐adhesive resin composite cement was used in adhesion testing, and the samples were artificially aged followed by enclosed‐mold micro‐shear test on day 1 and weeks 1, 4, and 8. Failure mode analysis and statistical analysis with one‐way/two‐way ANOVA (p < 0.05) were carried out. HF etching produced the highest surface roughness. XPS analysis identified after etching with HF a variety of Ti and Si ions: Ti4+, Ti3+, Ti2+, and Ti0 and, on the other hand, Si4+, Si3+, and Si2+. A gradual decrease in adhesion strength was observed after artificial aging. Adhesive and cohesive failures were observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface and Interface Analysis
Surface and Interface Analysis 化学-物理化学
CiteScore
3.30
自引率
5.90%
发文量
130
审稿时长
4.4 months
期刊介绍: Surface and Interface Analysis is devoted to the publication of papers dealing with the development and application of techniques for the characterization of surfaces, interfaces and thin films. Papers dealing with standardization and quantification are particularly welcome, and also those which deal with the application of these techniques to industrial problems. Papers dealing with the purely theoretical aspects of the technique will also be considered. Review articles will be published; prior consultation with one of the Editors is advised in these cases. Papers must clearly be of scientific value in the field and will be submitted to two independent referees. Contributions must be in English and must not have been published elsewhere, and authors must agree not to communicate the same material for publication to any other journal. Authors are invited to submit their papers for publication to John Watts (UK only), Jose Sanz (Rest of Europe), John T. Grant (all non-European countries, except Japan) or R. Shimizu (Japan only).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信