超级电容器电极材料:解决机制和电荷存储方面的挑战

IF 4.1 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
S. Attia, S. Mohamed, Y. F. Barakat, H. Hassan, W. A. Zoubi
{"title":"超级电容器电极材料:解决机制和电荷存储方面的挑战","authors":"S. Attia, S. Mohamed, Y. F. Barakat, H. Hassan, W. A. Zoubi","doi":"10.1515/revic-2020-0022","DOIUrl":null,"url":null,"abstract":"Abstract In recent years, rapid technological advances have required the development of energy-related devices. In this regard, Supercapacitors (SCs) have been reported to be one of the most potential candidates to meet the demands of human’s sustainable development owing to their unique properties such as outstanding cycling life, safe operation, low processing cost, and high power density compared to the batteries. This review describes the concise aspects of SCs including charge-storage mechanisms and scientific principles design of SCs as well as energy-related performance. In addition, the most important performance parameters of SCs, such as the operating potential window, electrolyte, and full cell voltage, are reviewed. Researches on electrode materials are crucial to SCs because they play a pivotal role in the performance of SCs. This review outlines recent research progress of carbon-based materials, transition metal oxides, sulfides, hydroxides, MXenes, and metal nitrides. Finally, we give a brief outline of SCs’ strategic direction for future growth.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"42 1","pages":"53 - 88"},"PeriodicalIF":4.1000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/revic-2020-0022","citationCount":"57","resultStr":"{\"title\":\"Supercapacitor electrode materials: addressing challenges in mechanism and charge storage\",\"authors\":\"S. Attia, S. Mohamed, Y. F. Barakat, H. Hassan, W. A. Zoubi\",\"doi\":\"10.1515/revic-2020-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In recent years, rapid technological advances have required the development of energy-related devices. In this regard, Supercapacitors (SCs) have been reported to be one of the most potential candidates to meet the demands of human’s sustainable development owing to their unique properties such as outstanding cycling life, safe operation, low processing cost, and high power density compared to the batteries. This review describes the concise aspects of SCs including charge-storage mechanisms and scientific principles design of SCs as well as energy-related performance. In addition, the most important performance parameters of SCs, such as the operating potential window, electrolyte, and full cell voltage, are reviewed. Researches on electrode materials are crucial to SCs because they play a pivotal role in the performance of SCs. This review outlines recent research progress of carbon-based materials, transition metal oxides, sulfides, hydroxides, MXenes, and metal nitrides. Finally, we give a brief outline of SCs’ strategic direction for future growth.\",\"PeriodicalId\":21162,\"journal\":{\"name\":\"Reviews in Inorganic Chemistry\",\"volume\":\"42 1\",\"pages\":\"53 - 88\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2021-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/revic-2020-0022\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/revic-2020-0022\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revic-2020-0022","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 57

摘要

摘要近年来,快速的技术进步要求开发与能源相关的设备。在这方面,据报道,超级电容器(SC)是满足人类可持续发展需求的最有潜力的候选者之一,因为与电池相比,它们具有优异的循环寿命、安全操作、低加工成本和高功率密度等独特特性。这篇综述简要介绍了SC的各个方面,包括电荷存储机制、SC的科学原理设计以及与能量相关的性能。此外,还综述了SC最重要的性能参数,如工作电位窗口、电解质和全电池电压。电极材料的研究对SCs的性能起着至关重要的作用。综述了碳基材料、过渡金属氧化物、硫化物、氢氧化物、MXenes和金属氮化物的最新研究进展。最后,我们简要概述了SC未来增长的战略方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supercapacitor electrode materials: addressing challenges in mechanism and charge storage
Abstract In recent years, rapid technological advances have required the development of energy-related devices. In this regard, Supercapacitors (SCs) have been reported to be one of the most potential candidates to meet the demands of human’s sustainable development owing to their unique properties such as outstanding cycling life, safe operation, low processing cost, and high power density compared to the batteries. This review describes the concise aspects of SCs including charge-storage mechanisms and scientific principles design of SCs as well as energy-related performance. In addition, the most important performance parameters of SCs, such as the operating potential window, electrolyte, and full cell voltage, are reviewed. Researches on electrode materials are crucial to SCs because they play a pivotal role in the performance of SCs. This review outlines recent research progress of carbon-based materials, transition metal oxides, sulfides, hydroxides, MXenes, and metal nitrides. Finally, we give a brief outline of SCs’ strategic direction for future growth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Inorganic Chemistry
Reviews in Inorganic Chemistry 化学-分析化学
CiteScore
7.30
自引率
4.90%
发文量
20
审稿时长
1 months
期刊介绍: Reviews in Inorganic Chemistry (REVIC) is a quarterly, peer-reviewed journal that focuses on developments in inorganic chemistry. Technical reviews offer detailed synthesis protocols, reviews of methodology and descriptions of apparatus. Topics are treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are committed to high quality standards and rapid handling of the review and publication process. The journal publishes all aspects of solid-state, molecular and surface chemistry. Topics may be treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are commited to high quality standards and rapid handling of the review and publication process. Topics: -Main group chemistry- Transition metal chemistry- Coordination chemistry- Organometallic chemistry- Catalysis- Bioinorganic chemistry- Supramolecular chemistry- Ionic liquids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信